Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 May 2020
08 May 2020
Historique:
received:
20
07
2019
accepted:
02
04
2020
entrez:
10
5
2020
pubmed:
10
5
2020
medline:
10
5
2020
Statut:
epublish
Résumé
Despite tremendous importance in catalysis, the design of oxide-metal interface has been hampered by the limited understanding of the nature of interfacial sites and the oxide-metal interaction (OMI). Through construction of well-defined Cu
Identifiants
pubmed: 32385230
doi: 10.1038/s41467-020-15965-8
pii: 10.1038/s41467-020-15965-8
pmc: PMC7210313
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2312Subventions
Organisme : Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)
ID : 2017YFB0602205
Organisme : Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)
ID : 2016YFA0202803
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 91545204
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 21972144
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 11227902
Références
Yu, W., Porosoff, M. D. & Chen, J. G. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112, 5780–5817 (2012).
pubmed: 22920037
doi: 10.1021/cr300096b
Thayer, A. M. Catalyst suppliers face changing industry. Chem. Eng. News 70, 27–49 (1992).
doi: 10.1021/cen-v070n010.p027
Guo, Z. et al. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 43, 3480–3524 (2014).
pubmed: 24553414
doi: 10.1039/c3cs60282f
Armor, J. N. Environmental catalysis. Appl. Catal. B 1, 221–256 (1992).
doi: 10.1016/0926-3373(92)80051-Z
Grimaud, A., Hong, W. T., Shao-Horn, Y. & arascon, J. M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).
pubmed: 26796721
doi: 10.1038/nmat4551
Wu, C. H. et al. Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation. Nat. Catal. 2, 78–85 (2019).
doi: 10.1038/s41929-018-0190-6
Zavabeti, A. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358, 332–335 (2017).
pubmed: 29051372
doi: 10.1126/science.aao4249
Tauster, S. J., Fung, S. C. & Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170–175 (1978).
doi: 10.1021/ja00469a029
Fester, J. et al. Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands. Nat. Commun. 8, 14169 (2017).
pubmed: 28134335
pmcid: 5290272
doi: 10.1038/ncomms14169
Rodriguez, J. A. et al. Inverse oxide/metal catalysts in fundamental studies and practical applications: a perspective of recent developments. J. Phys. Chem. Lett. 7, 2627–2639 (2016).
pubmed: 27327114
doi: 10.1021/acs.jpclett.6b00499
Senanayake, S. D., Stacchiola, D. & Rodriguez, J. A. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Acc. Chem. Res. 46, 1702–1711 (2013).
pubmed: 23286528
doi: 10.1021/ar300231p
Fu, Q. et al. Interface-confined ferrous centers for catalytic oxidation. Science 328, 1141–1144 (2010).
pubmed: 20508127
doi: 10.1126/science.1188267
Fester, J. et al. The structure of the cobalt oxide/Au catalyst interface in electrochemical water splitting. Angew. Chem. Int. Ed. 57, 11893–11897 (2018).
doi: 10.1002/anie.201804417
Baber, A. E. et al. In situ imaging of Cu
pubmed: 24168720
doi: 10.1021/ja408506y
Schmieder, P., Denysenko, D., Grzywa, M., Magdysyuk, O. & Volkmer, D. A structurally flexible triazolate-based metal-organic framework featuring coordinatively unsaturated copper(I) sites. Dalton Trans. 45, 13853–13862 (2016).
pubmed: 27513160
doi: 10.1039/C6DT02672A
Oezaslan, M., Heggen, M. & Strasser, P. Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J. Am. Chem. Soc. 134, 514–524 (2011).
pubmed: 22129031
doi: 10.1021/ja2088162
Jiang, K. et al. Ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angew. Chem. Int. Ed. 55, 9030–9035 (2016).
doi: 10.1002/anie.201603022
Guo, S. et al. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles. J. Am. Chem. Soc. 136, 15026–15033 (2014).
pubmed: 25279704
doi: 10.1021/ja508256g
Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).
pubmed: 20489713
doi: 10.1038/nchem.623
Koh, S. & Strasser, P. Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 129, 12624–12625 (2007).
pubmed: 17910452
doi: 10.1021/ja0742784
Della Pina, C., Falletta, E. & Rossi, M. Update on selective oxidation using gold. Chem. Soc. Rev. 41, 350–369 (2012).
pubmed: 21727977
doi: 10.1039/C1CS15089H
Zhao, G. et al. Metal/oxide interfacial effects on the selective oxidation of primary alcohols. Nat. Commun. 8, 14039 (2017).
pubmed: 28098146
pmcid: 5253635
doi: 10.1038/ncomms14039
Zheng, X. et al. Epoxidation of propylene by molecular oxygen over unsupported AgCux bimetallic catalyst. Rare Met. 34, 477–490 (2015).
doi: 10.1007/s12598-015-0500-y
Huang, J. et al. The effect of the support on the surface composition of PtCu alloy nanocatalysts: In situ XPS and HS-LEIS studies. Chin. J. Catal. 38, 1229–1236 (2017).
doi: 10.1016/S1872-2067(17)62857-2
Friebel, D. et al. Structure, redox chemistry, and interfacial alloy formation in monolayer and multilayer Cu/Au(111) model catalysts for CO
doi: 10.1021/jp412000j
Zhao, L., Kong, L., Liu, C., Wang, Y. & Dai, L. AgCu/SiC-powder: a highly stable and active catalyst for gas-phase selective oxidation of alcohols. Catal. Commun. 98, 1–4 (2017).
doi: 10.1016/j.catcom.2017.04.043
Liu, Q. et al. Tuning the structures of two-dimensional cuprous oxide confined on Au(111). Nano Res. 11, 5957–5967 (2018).
doi: 10.1007/s12274-018-2109-6
Liu, Y. et al. Enhanced oxidation resistance of active nanostructures via dynamic size effect. Nat. Commun. 8, 14459 (2017).
pubmed: 28223687
pmcid: 5322499
doi: 10.1038/ncomms14459
Monig, H. et al. Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: a case study. ACS Nano 7, 10233–10244 (2013).
pubmed: 24111487
doi: 10.1021/nn4045358
Yang, F. et al. Identification of 5-7 defects in a copper oxide surface. J. Am. Chem. Soc. 133, 11474–11477 (2011).
pubmed: 21714558
doi: 10.1021/ja204652v
Fester, J. et al. Comparative analysis of cobalt oxide nanoisland stability and edge structures on three related noble metal surfaces: Au(111), Pt(111) and Ag(111). Top. Catal. 60, 503–512 (2016).
doi: 10.1007/s11244-016-0708-6
Parker, D. H., Bartram, M. E. & Koel, B. E. Study of high coverages of atomic oxygen on the Pt (111) surface. Surf. Sci. 217, 489–510 (1989).
doi: 10.1016/0039-6028(89)90443-3
Hammer, B., Morikawa, Y. & Norskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76, 2141–2144 (1996).
pubmed: 10060616
doi: 10.1103/PhysRevLett.76.2141
Predel B. Cu-Pt (Copper-Platinum). (Springer, Berlin Heidelberg, 1994).
Kinne, M. et al. Kinetics of the CO oxidation reaction on Pt(111) studied by in situ high-resolution x-ray photoelectron spectroscopy. J. Chem. Phys. 120, 7113–−7122 (2004).
pubmed: 15267615
doi: 10.1063/1.1669378
Cox, D. F. & Schulz, K. H. Interaction of CO with Cu+ cations: CO adsorption on Cu2O(100). Surf. Sci. 249, 138–148 (1991).
doi: 10.1016/0039-6028(91)90839-K
Su, H.-Y., Yang, M.-M., Bao, X.-H. & Li, W.-X. The effect of water on the CO oxidation on Ag(111) and Au(111) surfaces: a first-principle study. J. Phys. Chem. C 112, 17303–17310 (2008).
doi: 10.1021/jp803400p
Andryushechkin, B. V., Shevlyuga, V. M., Pavlova, T. V., Zhidomirov, G. M. & Eltsov, K. N. Adsorption of O
pubmed: 27517780
doi: 10.1103/PhysRevLett.117.056101
Hansen, W., Bertolo, M. & Jacobi, K. Physisorption of CO on Ag(111): investigation of the monolayer and the multilayer through HREELS, ARUPS, and TDS. Surf. Sci. 253, 1–12 (1991).
doi: 10.1016/0039-6028(91)90576-E
Montemore, M. M., van Spronsen, M. A., Madix, R. J. & Friend, C. M. O
pubmed: 29116787
doi: 10.1021/acs.chemrev.7b00217
Liu, X. et al. Structural changes of Au–Cu bimetallic catalysts in CO oxidation: in situ XRD, EPR, XANES, and FT-IR characterizations. J. Catal. 278, 288–296 (2011).
doi: 10.1016/j.jcat.2010.12.016
Kim, J. et al. Adsorbate-driven reactive interfacial Pt-NiO1−x nanostructure formation on the Pt3Ni(111) alloy surface. Sci. Adv. 4, eaat3151 (2018).
pubmed: 30027118
pmcid: 6044734
doi: 10.1126/sciadv.aat3151
Poulston, S., Parlett, P. M., Stone, P. & Bowker, M. Surface oxidation and reduction of CuO and Cu
doi: 10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z
Hopster, H. & Ibach, H. Adsorption of CO on Pt(111) and Pt 6(111) × (111) studied by high resolution electron energy loss spectroscopy and thermal desorption spectroscopy. Surf. Sci. 77, 109–117 (1978).
doi: 10.1016/0039-6028(78)90164-4
Schnadt, J. et al. Experimental and theoretical study of oxygen adsorption structures on Ag(111). Phys. Rev. B 80, 075424 (2009).
doi: 10.1103/PhysRevB.80.075424
Green, I. X., Tang, W. J., Neurock, M. & Yates, J. T. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO
pubmed: 21817048
doi: 10.1126/science.1207272
Hammer B. & Nørskov J. K. Theoretical Surface Science and Catalysis-Calculations and Concepts. (Academic Press, 2000).
Chen, H. et al. CO and H
doi: 10.1021/acscatal.8b03687
Mönig, H. et al. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips. Nat. Nanotechnol. 13, 371–375 (2018).
pubmed: 29632397
doi: 10.1038/s41565-018-0104-4
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
doi: 10.1103/PhysRevB.47.558
Hobbs, D., Kresse, G. & Hafner, J. Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. B 62, 11556–11570 (2000).
doi: 10.1103/PhysRevB.62.11556
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
doi: 10.1103/PhysRevB.54.11169
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
pubmed: 10062328
pmcid: 10062328
doi: 10.1103/PhysRevLett.77.3865
Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).
doi: 10.1063/1.1323224
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
doi: 10.1063/1.1329672
Nørskov, J. K. N., Studt, F., Abild-Pedersen, F. & Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis. (Wiley, 2014).
Hjorth Larsen, A. et al. The atomic simulation environment-a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).
pubmed: 28323250
doi: 10.1088/1361-648X/aa680e