Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
08 May 2020
Historique:
received: 20 07 2019
accepted: 02 04 2020
entrez: 10 5 2020
pubmed: 10 5 2020
medline: 10 5 2020
Statut: epublish

Résumé

Despite tremendous importance in catalysis, the design of oxide-metal interface has been hampered by the limited understanding of the nature of interfacial sites and the oxide-metal interaction (OMI). Through construction of well-defined Cu

Identifiants

pubmed: 32385230
doi: 10.1038/s41467-020-15965-8
pii: 10.1038/s41467-020-15965-8
pmc: PMC7210313
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2312

Subventions

Organisme : Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)
ID : 2017YFB0602205
Organisme : Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)
ID : 2016YFA0202803
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 91545204
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 21972144
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 11227902

Références

Yu, W., Porosoff, M. D. & Chen, J. G. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112, 5780–5817 (2012).
pubmed: 22920037 doi: 10.1021/cr300096b
Thayer, A. M. Catalyst suppliers face changing industry. Chem. Eng. News 70, 27–49 (1992).
doi: 10.1021/cen-v070n010.p027
Guo, Z. et al. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 43, 3480–3524 (2014).
pubmed: 24553414 doi: 10.1039/c3cs60282f
Armor, J. N. Environmental catalysis. Appl. Catal. B 1, 221–256 (1992).
doi: 10.1016/0926-3373(92)80051-Z
Grimaud, A., Hong, W. T., Shao-Horn, Y. & arascon, J. M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).
pubmed: 26796721 doi: 10.1038/nmat4551
Wu, C. H. et al. Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation. Nat. Catal. 2, 78–85 (2019).
doi: 10.1038/s41929-018-0190-6
Zavabeti, A. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358, 332–335 (2017).
pubmed: 29051372 doi: 10.1126/science.aao4249
Tauster, S. J., Fung, S. C. & Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170–175 (1978).
doi: 10.1021/ja00469a029
Fester, J. et al. Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands. Nat. Commun. 8, 14169 (2017).
pubmed: 28134335 pmcid: 5290272 doi: 10.1038/ncomms14169
Rodriguez, J. A. et al. Inverse oxide/metal catalysts in fundamental studies and practical applications: a perspective of recent developments. J. Phys. Chem. Lett. 7, 2627–2639 (2016).
pubmed: 27327114 doi: 10.1021/acs.jpclett.6b00499
Senanayake, S. D., Stacchiola, D. & Rodriguez, J. A. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Acc. Chem. Res. 46, 1702–1711 (2013).
pubmed: 23286528 doi: 10.1021/ar300231p
Fu, Q. et al. Interface-confined ferrous centers for catalytic oxidation. Science 328, 1141–1144 (2010).
pubmed: 20508127 doi: 10.1126/science.1188267
Fester, J. et al. The structure of the cobalt oxide/Au catalyst interface in electrochemical water splitting. Angew. Chem. Int. Ed. 57, 11893–11897 (2018).
doi: 10.1002/anie.201804417
Baber, A. E. et al. In situ imaging of Cu
pubmed: 24168720 doi: 10.1021/ja408506y
Schmieder, P., Denysenko, D., Grzywa, M., Magdysyuk, O. & Volkmer, D. A structurally flexible triazolate-based metal-organic framework featuring coordinatively unsaturated copper(I) sites. Dalton Trans. 45, 13853–13862 (2016).
pubmed: 27513160 doi: 10.1039/C6DT02672A
Oezaslan, M., Heggen, M. & Strasser, P. Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J. Am. Chem. Soc. 134, 514–524 (2011).
pubmed: 22129031 doi: 10.1021/ja2088162
Jiang, K. et al. Ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angew. Chem. Int. Ed. 55, 9030–9035 (2016).
doi: 10.1002/anie.201603022
Guo, S. et al. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles. J. Am. Chem. Soc. 136, 15026–15033 (2014).
pubmed: 25279704 doi: 10.1021/ja508256g
Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).
pubmed: 20489713 doi: 10.1038/nchem.623
Koh, S. & Strasser, P. Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 129, 12624–12625 (2007).
pubmed: 17910452 doi: 10.1021/ja0742784
Della Pina, C., Falletta, E. & Rossi, M. Update on selective oxidation using gold. Chem. Soc. Rev. 41, 350–369 (2012).
pubmed: 21727977 doi: 10.1039/C1CS15089H
Zhao, G. et al. Metal/oxide interfacial effects on the selective oxidation of primary alcohols. Nat. Commun. 8, 14039 (2017).
pubmed: 28098146 pmcid: 5253635 doi: 10.1038/ncomms14039
Zheng, X. et al. Epoxidation of propylene by molecular oxygen over unsupported AgCux bimetallic catalyst. Rare Met. 34, 477–490 (2015).
doi: 10.1007/s12598-015-0500-y
Huang, J. et al. The effect of the support on the surface composition of PtCu alloy nanocatalysts: In situ XPS and HS-LEIS studies. Chin. J. Catal. 38, 1229–1236 (2017).
doi: 10.1016/S1872-2067(17)62857-2
Friebel, D. et al. Structure, redox chemistry, and interfacial alloy formation in monolayer and multilayer Cu/Au(111) model catalysts for CO
doi: 10.1021/jp412000j
Zhao, L., Kong, L., Liu, C., Wang, Y. & Dai, L. AgCu/SiC-powder: a highly stable and active catalyst for gas-phase selective oxidation of alcohols. Catal. Commun. 98, 1–4 (2017).
doi: 10.1016/j.catcom.2017.04.043
Liu, Q. et al. Tuning the structures of two-dimensional cuprous oxide confined on Au(111). Nano Res. 11, 5957–5967 (2018).
doi: 10.1007/s12274-018-2109-6
Liu, Y. et al. Enhanced oxidation resistance of active nanostructures via dynamic size effect. Nat. Commun. 8, 14459 (2017).
pubmed: 28223687 pmcid: 5322499 doi: 10.1038/ncomms14459
Monig, H. et al. Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: a case study. ACS Nano 7, 10233–10244 (2013).
pubmed: 24111487 doi: 10.1021/nn4045358
Yang, F. et al. Identification of 5-7 defects in a copper oxide surface. J. Am. Chem. Soc. 133, 11474–11477 (2011).
pubmed: 21714558 doi: 10.1021/ja204652v
Fester, J. et al. Comparative analysis of cobalt oxide nanoisland stability and edge structures on three related noble metal surfaces: Au(111), Pt(111) and Ag(111). Top. Catal. 60, 503–512 (2016).
doi: 10.1007/s11244-016-0708-6
Parker, D. H., Bartram, M. E. & Koel, B. E. Study of high coverages of atomic oxygen on the Pt (111) surface. Surf. Sci. 217, 489–510 (1989).
doi: 10.1016/0039-6028(89)90443-3
Hammer, B., Morikawa, Y. & Norskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76, 2141–2144 (1996).
pubmed: 10060616 doi: 10.1103/PhysRevLett.76.2141
Predel B. Cu-Pt (Copper-Platinum). (Springer, Berlin Heidelberg, 1994).
Kinne, M. et al. Kinetics of the CO oxidation reaction on Pt(111) studied by in situ high-resolution x-ray photoelectron spectroscopy. J. Chem. Phys. 120, 7113–−7122 (2004).
pubmed: 15267615 doi: 10.1063/1.1669378
Cox, D. F. & Schulz, K. H. Interaction of CO with Cu+ cations: CO adsorption on Cu2O(100). Surf. Sci. 249, 138–148 (1991).
doi: 10.1016/0039-6028(91)90839-K
Su, H.-Y., Yang, M.-M., Bao, X.-H. & Li, W.-X. The effect of water on the CO oxidation on Ag(111) and Au(111) surfaces: a first-principle study. J. Phys. Chem. C 112, 17303–17310 (2008).
doi: 10.1021/jp803400p
Andryushechkin, B. V., Shevlyuga, V. M., Pavlova, T. V., Zhidomirov, G. M. & Eltsov, K. N. Adsorption of O
pubmed: 27517780 doi: 10.1103/PhysRevLett.117.056101
Hansen, W., Bertolo, M. & Jacobi, K. Physisorption of CO on Ag(111): investigation of the monolayer and the multilayer through HREELS, ARUPS, and TDS. Surf. Sci. 253, 1–12 (1991).
doi: 10.1016/0039-6028(91)90576-E
Montemore, M. M., van Spronsen, M. A., Madix, R. J. & Friend, C. M. O
pubmed: 29116787 doi: 10.1021/acs.chemrev.7b00217
Liu, X. et al. Structural changes of Au–Cu bimetallic catalysts in CO oxidation: in situ XRD, EPR, XANES, and FT-IR characterizations. J. Catal. 278, 288–296 (2011).
doi: 10.1016/j.jcat.2010.12.016
Kim, J. et al. Adsorbate-driven reactive interfacial Pt-NiO1−x nanostructure formation on the Pt3Ni(111) alloy surface. Sci. Adv. 4, eaat3151 (2018).
pubmed: 30027118 pmcid: 6044734 doi: 10.1126/sciadv.aat3151
Poulston, S., Parlett, P. M., Stone, P. & Bowker, M. Surface oxidation and reduction of CuO and Cu
doi: 10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z
Hopster, H. & Ibach, H. Adsorption of CO on Pt(111) and Pt 6(111) × (111) studied by high resolution electron energy loss spectroscopy and thermal desorption spectroscopy. Surf. Sci. 77, 109–117 (1978).
doi: 10.1016/0039-6028(78)90164-4
Schnadt, J. et al. Experimental and theoretical study of oxygen adsorption structures on Ag(111). Phys. Rev. B 80, 075424 (2009).
doi: 10.1103/PhysRevB.80.075424
Green, I. X., Tang, W. J., Neurock, M. & Yates, J. T. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO
pubmed: 21817048 doi: 10.1126/science.1207272
Hammer B. & Nørskov J. K. Theoretical Surface Science and Catalysis-Calculations and Concepts. (Academic Press, 2000).
Chen, H. et al. CO and H
doi: 10.1021/acscatal.8b03687
Mönig, H. et al. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips. Nat. Nanotechnol. 13, 371–375 (2018).
pubmed: 29632397 doi: 10.1038/s41565-018-0104-4
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
doi: 10.1103/PhysRevB.47.558
Hobbs, D., Kresse, G. & Hafner, J. Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. B 62, 11556–11570 (2000).
doi: 10.1103/PhysRevB.62.11556
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
doi: 10.1103/PhysRevB.54.11169
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
pubmed: 10062328 pmcid: 10062328 doi: 10.1103/PhysRevLett.77.3865
Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).
doi: 10.1063/1.1323224
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
doi: 10.1063/1.1329672
Nørskov, J. K. N., Studt, F., Abild-Pedersen, F. & Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis. (Wiley, 2014).
Hjorth Larsen, A. et al. The atomic simulation environment-a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).
pubmed: 28323250 doi: 10.1088/1361-648X/aa680e

Auteurs

Wugen Huang (W)

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
University of Chinese Academy of Sciences, 100049, Beijing, China.

Qingfei Liu (Q)

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
University of Chinese Academy of Sciences, 100049, Beijing, China.
College of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, China.

Zhiwen Zhou (Z)

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
University of Chinese Academy of Sciences, 100049, Beijing, China.

Yangsheng Li (Y)

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
University of Chinese Academy of Sciences, 100049, Beijing, China.

Yunjian Ling (Y)

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
University of Chinese Academy of Sciences, 100049, Beijing, China.

Yong Wang (Y)

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.

Yunchuan Tu (Y)

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.

Beibei Wang (B)

School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.

Xiaohong Zhou (X)

School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.

Dehui Deng (D)

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.

Bo Yang (B)

School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.

Yong Yang (Y)

School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.

Zhi Liu (Z)

School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China.

Xinhe Bao (X)

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.

Fan Yang (F)

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China. fyang@dicp.ac.cn.
School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China. fyang@dicp.ac.cn.

Classifications MeSH