Deciphering exciton-generation processes in quantum-dot electroluminescence.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
08 May 2020
Historique:
received: 10 01 2020
accepted: 02 04 2020
entrez: 10 5 2020
pubmed: 10 5 2020
medline: 10 5 2020
Statut: epublish

Résumé

Electroluminescence of colloidal nanocrystals promises a new generation of high-performance and solution-processable light-emitting diodes. The operation of nanocrystal-based light-emitting diodes relies on the radiative recombination of electrically generated excitons. However, a fundamental question-how excitons are electrically generated in individual nanocrystals-remains unanswered. Here, we reveal a nanoscopic mechanism of sequential electron-hole injection for exciton generation in nanocrystal-based electroluminescent devices. To decipher the corresponding elementary processes, we develop electrically-pumped single-nanocrystal spectroscopy. While hole injection into neutral quantum dots is generally considered to be inefficient, we find that the intermediate negatively charged state of quantum dots triggers confinement-enhanced Coulomb interactions, which simultaneously accelerate hole injection and hinder excessive electron injection. In-situ/operando spectroscopy on state-of-the-art quantum-dot light-emitting diodes demonstrates that exciton generation at the ensemble level is consistent with the charge-confinement-enhanced sequential electron-hole injection mechanism probed at the single-nanocrystal level. Our findings provide a universal mechanism for enhancing charge balance in nanocrystal-based electroluminescent devices.

Identifiants

pubmed: 32385262
doi: 10.1038/s41467-020-15944-z
pii: 10.1038/s41467-020-15944-z
pmc: PMC7210259
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2309

Références

Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).
doi: 10.1063/1.447218
Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).
doi: 10.1021/ja00072a025
Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).
doi: 10.1126/science.271.5251.933
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX
pubmed: 25633588 pmcid: 4462997 doi: 10.1021/nl5048779
Pu, C. et al. Synthetic control of exciton behavior in colloidal quantum dots. J. Am. Chem. Soc. 139, 3302–3311 (2017).
pubmed: 28170239 doi: 10.1021/jacs.6b11431 pmcid: 28170239
Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).
doi: 10.1038/370354a0
Coe, S., Woo, W. K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).
pubmed: 12490945 doi: 10.1038/nature01217 pmcid: 12490945
Sun, Q. et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics 1, 717–722 (2007).
doi: 10.1038/nphoton.2007.226
Qian, L., Zheng, Y., Xue, J. & Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 5, 543–548 (2011).
doi: 10.1038/nphoton.2011.171
Mashford, B. S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 7, 407–412 (2013).
doi: 10.1038/nphoton.2013.70
Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).
pubmed: 25363773 doi: 10.1038/nature13829 pmcid: 25363773
Yang, Y. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 9, 259–266 (2015).
doi: 10.1038/nphoton.2015.36
Oh, N. et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science 355, 616–619 (2017).
pubmed: 28183975 doi: 10.1126/science.aal2038 pmcid: 28183975
Li, X. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photonics 12, 159–164 (2018).
doi: 10.1038/s41566-018-0105-8
Cao, W. et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 9, 2608 (2018).
pubmed: 29973590 pmcid: 6031613 doi: 10.1038/s41467-018-04986-z
Lim, J. et al. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18, 6645–6653 (2018).
pubmed: 30198267 doi: 10.1021/acs.nanolett.8b03457 pmcid: 30198267
Shen, H. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 13, 192–197 (2019).
doi: 10.1038/s41566-019-0364-z
Sun, Y. et al. Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 13, 11433–11442 (2019).
pubmed: 31539472 doi: 10.1021/acsnano.9b04879 pmcid: 31539472
Li, Y. et al. Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 141, 6448–6452 (2019).
pubmed: 30964282 doi: 10.1021/jacs.8b12908 pmcid: 30964282
Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).
pubmed: 31776489 doi: 10.1038/s41586-019-1771-5 pmcid: 31776489
Song, J. et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX
pubmed: 26444873 doi: 10.1002/adma.201502567 pmcid: 26444873
Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 12, 681–687 (2018).
doi: 10.1038/s41566-018-0260-y
Bae, W. K. et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4, 2661 (2013).
pubmed: 24157692 pmcid: 3826634 doi: 10.1038/ncomms3661
Shirasaki, Y., Supran, G. J., Tisdale, W. A. & Bulović, V. Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes. Phys. Rev. Lett. 110, 217403 (2013).
pubmed: 23745932 doi: 10.1103/PhysRevLett.110.217403 pmcid: 23745932
Shendre, S., Sharma, V. K., Dang, C. & Demir, H. V. Exciton dynamics in colloidal quantum-dot LEDs under active device operations. ACS Photonics 5, 480–486 (2018).
doi: 10.1021/acsphotonics.7b00984
Schubert, E. F. Light-Emitting Diodes (Cambridge University Press, Cambridge, 2003).
Klimov, V. I. et al. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).
pubmed: 10669406 doi: 10.1126/science.287.5455.1011 pmcid: 10669406
Jha, P. P. & Guyot-Sionnest, P. Trion decay in colloidal quantum dots. ACS Nano 3, 1011–1015 (2009).
pubmed: 19341263 doi: 10.1021/nn9001177 pmcid: 19341263
Lin, X. et al. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nat. Commun. 8, 1132 (2017).
pubmed: 29070867 pmcid: 5656660 doi: 10.1038/s41467-017-01379-6
Kagan, C. R., Murray, C. B. & Bawendi, M. G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 54, 8633–8643 (1996).
doi: 10.1103/PhysRevB.54.8633
Ginger, D. S. & Greenham, N. C. Charge injection and transport in films of CdSe nanocrystals. J. Appl. Phys. 87, 1361–1368 (2000).
doi: 10.1063/1.372021
Akselrod, G. M. et al. Subdiffusive exciton transport in quantum dot solids. Nano Lett. 14, 3556–3562 (2014).
pubmed: 24807586 doi: 10.1021/nl501190s pmcid: 24807586
Park, Y. S., Bae, W. K., Pietryga, J. M. & Klimov, V. I. Auger recombination of biexcitons and negative and positive trions in individual quantum dots. ACS Nano 8, 7288–7296 (2014).
pubmed: 24909861 doi: 10.1021/nn5023473 pmcid: 24909861
Xu, W. et al. Deciphering charging status, absolute quantum efficiency, and absorption cross section of multicarrier states in single colloidal quantum dots. Nano Lett. 17, 7487–7493 (2017).
pubmed: 29160715 doi: 10.1021/acs.nanolett.7b03399 pmcid: 29160715
Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).
doi: 10.1038/383802a0
Meng, R. et al. Charging and discharging channels in photoluminescence intermittency of single colloidal CdSe/CdS core/shell quantum dot. J. Phys. Chem. Lett. 7, 5176–5182 (2016).
pubmed: 27973911 doi: 10.1021/acs.jpclett.6b02448 pmcid: 27973911
Galland, C. et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479, 203–U275 (2011).
pubmed: 22071764 pmcid: 3390028 doi: 10.1038/nature10569
Alperson, B., Cohen, S., Rubinstein, I. & Hodes, G. Room-temperature conductance spectroscopy of CdSe quantum dots using a modified scanning force microscope. Phys. Rev. B 52, R17017–R17020 (1995).
doi: 10.1103/PhysRevB.52.R17017
Zabet-Khosousi, A. & Dhirani, A.-A. Charge transport in nanoparticle assemblies. Chem. Rev. 108, 4072–4124 (2008).
pubmed: 18811216 doi: 10.1021/cr0680134 pmcid: 18811216
Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).
pubmed: 19958036 doi: 10.1021/cr900137k pmcid: 19958036
Bozyigit, D., Yarema, O. & Wood, V. Origins of low quantum efficiencies in quantum dot LEDs. Adv. Funct. Mater. 23, 3024–3029 (2013).
doi: 10.1002/adfm.201203191
Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).
pubmed: 28321128 doi: 10.1038/nature21424 pmcid: 28321128
Lim, J., Park, Y.-S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2017).
pubmed: 29180770 doi: 10.1038/nmat5011 pmcid: 29180770
Zhang, Z. et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 30, 1801387 (2018).
doi: 10.1002/adma.201801387
Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, New York, 2006).

Auteurs

Yunzhou Deng (Y)

Center for Chemistry of High-Performance & Novel Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China.

Xing Lin (X)

Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China.

Wei Fang (W)

State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China.

Dawei Di (D)

State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310027, Hangzhou, China.

Linjun Wang (L)

Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China.

Richard H Friend (RH)

Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.

Xiaogang Peng (X)

Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China.

Yizheng Jin (Y)

Center for Chemistry of High-Performance & Novel Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China. yizhengjin@zju.edu.cn.

Classifications MeSH