Deciphering exciton-generation processes in quantum-dot electroluminescence.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 May 2020
08 May 2020
Historique:
received:
10
01
2020
accepted:
02
04
2020
entrez:
10
5
2020
pubmed:
10
5
2020
medline:
10
5
2020
Statut:
epublish
Résumé
Electroluminescence of colloidal nanocrystals promises a new generation of high-performance and solution-processable light-emitting diodes. The operation of nanocrystal-based light-emitting diodes relies on the radiative recombination of electrically generated excitons. However, a fundamental question-how excitons are electrically generated in individual nanocrystals-remains unanswered. Here, we reveal a nanoscopic mechanism of sequential electron-hole injection for exciton generation in nanocrystal-based electroluminescent devices. To decipher the corresponding elementary processes, we develop electrically-pumped single-nanocrystal spectroscopy. While hole injection into neutral quantum dots is generally considered to be inefficient, we find that the intermediate negatively charged state of quantum dots triggers confinement-enhanced Coulomb interactions, which simultaneously accelerate hole injection and hinder excessive electron injection. In-situ/operando spectroscopy on state-of-the-art quantum-dot light-emitting diodes demonstrates that exciton generation at the ensemble level is consistent with the charge-confinement-enhanced sequential electron-hole injection mechanism probed at the single-nanocrystal level. Our findings provide a universal mechanism for enhancing charge balance in nanocrystal-based electroluminescent devices.
Identifiants
pubmed: 32385262
doi: 10.1038/s41467-020-15944-z
pii: 10.1038/s41467-020-15944-z
pmc: PMC7210259
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2309Références
Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).
doi: 10.1063/1.447218
Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).
doi: 10.1021/ja00072a025
Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).
doi: 10.1126/science.271.5251.933
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX
pubmed: 25633588
pmcid: 4462997
doi: 10.1021/nl5048779
Pu, C. et al. Synthetic control of exciton behavior in colloidal quantum dots. J. Am. Chem. Soc. 139, 3302–3311 (2017).
pubmed: 28170239
doi: 10.1021/jacs.6b11431
pmcid: 28170239
Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).
doi: 10.1038/370354a0
Coe, S., Woo, W. K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).
pubmed: 12490945
doi: 10.1038/nature01217
pmcid: 12490945
Sun, Q. et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics 1, 717–722 (2007).
doi: 10.1038/nphoton.2007.226
Qian, L., Zheng, Y., Xue, J. & Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 5, 543–548 (2011).
doi: 10.1038/nphoton.2011.171
Mashford, B. S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 7, 407–412 (2013).
doi: 10.1038/nphoton.2013.70
Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).
pubmed: 25363773
doi: 10.1038/nature13829
pmcid: 25363773
Yang, Y. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 9, 259–266 (2015).
doi: 10.1038/nphoton.2015.36
Oh, N. et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science 355, 616–619 (2017).
pubmed: 28183975
doi: 10.1126/science.aal2038
pmcid: 28183975
Li, X. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photonics 12, 159–164 (2018).
doi: 10.1038/s41566-018-0105-8
Cao, W. et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 9, 2608 (2018).
pubmed: 29973590
pmcid: 6031613
doi: 10.1038/s41467-018-04986-z
Lim, J. et al. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18, 6645–6653 (2018).
pubmed: 30198267
doi: 10.1021/acs.nanolett.8b03457
pmcid: 30198267
Shen, H. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 13, 192–197 (2019).
doi: 10.1038/s41566-019-0364-z
Sun, Y. et al. Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 13, 11433–11442 (2019).
pubmed: 31539472
doi: 10.1021/acsnano.9b04879
pmcid: 31539472
Li, Y. et al. Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 141, 6448–6452 (2019).
pubmed: 30964282
doi: 10.1021/jacs.8b12908
pmcid: 30964282
Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).
pubmed: 31776489
doi: 10.1038/s41586-019-1771-5
pmcid: 31776489
Song, J. et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX
pubmed: 26444873
doi: 10.1002/adma.201502567
pmcid: 26444873
Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 12, 681–687 (2018).
doi: 10.1038/s41566-018-0260-y
Bae, W. K. et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4, 2661 (2013).
pubmed: 24157692
pmcid: 3826634
doi: 10.1038/ncomms3661
Shirasaki, Y., Supran, G. J., Tisdale, W. A. & Bulović, V. Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes. Phys. Rev. Lett. 110, 217403 (2013).
pubmed: 23745932
doi: 10.1103/PhysRevLett.110.217403
pmcid: 23745932
Shendre, S., Sharma, V. K., Dang, C. & Demir, H. V. Exciton dynamics in colloidal quantum-dot LEDs under active device operations. ACS Photonics 5, 480–486 (2018).
doi: 10.1021/acsphotonics.7b00984
Schubert, E. F. Light-Emitting Diodes (Cambridge University Press, Cambridge, 2003).
Klimov, V. I. et al. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).
pubmed: 10669406
doi: 10.1126/science.287.5455.1011
pmcid: 10669406
Jha, P. P. & Guyot-Sionnest, P. Trion decay in colloidal quantum dots. ACS Nano 3, 1011–1015 (2009).
pubmed: 19341263
doi: 10.1021/nn9001177
pmcid: 19341263
Lin, X. et al. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nat. Commun. 8, 1132 (2017).
pubmed: 29070867
pmcid: 5656660
doi: 10.1038/s41467-017-01379-6
Kagan, C. R., Murray, C. B. & Bawendi, M. G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 54, 8633–8643 (1996).
doi: 10.1103/PhysRevB.54.8633
Ginger, D. S. & Greenham, N. C. Charge injection and transport in films of CdSe nanocrystals. J. Appl. Phys. 87, 1361–1368 (2000).
doi: 10.1063/1.372021
Akselrod, G. M. et al. Subdiffusive exciton transport in quantum dot solids. Nano Lett. 14, 3556–3562 (2014).
pubmed: 24807586
doi: 10.1021/nl501190s
pmcid: 24807586
Park, Y. S., Bae, W. K., Pietryga, J. M. & Klimov, V. I. Auger recombination of biexcitons and negative and positive trions in individual quantum dots. ACS Nano 8, 7288–7296 (2014).
pubmed: 24909861
doi: 10.1021/nn5023473
pmcid: 24909861
Xu, W. et al. Deciphering charging status, absolute quantum efficiency, and absorption cross section of multicarrier states in single colloidal quantum dots. Nano Lett. 17, 7487–7493 (2017).
pubmed: 29160715
doi: 10.1021/acs.nanolett.7b03399
pmcid: 29160715
Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).
doi: 10.1038/383802a0
Meng, R. et al. Charging and discharging channels in photoluminescence intermittency of single colloidal CdSe/CdS core/shell quantum dot. J. Phys. Chem. Lett. 7, 5176–5182 (2016).
pubmed: 27973911
doi: 10.1021/acs.jpclett.6b02448
pmcid: 27973911
Galland, C. et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479, 203–U275 (2011).
pubmed: 22071764
pmcid: 3390028
doi: 10.1038/nature10569
Alperson, B., Cohen, S., Rubinstein, I. & Hodes, G. Room-temperature conductance spectroscopy of CdSe quantum dots using a modified scanning force microscope. Phys. Rev. B 52, R17017–R17020 (1995).
doi: 10.1103/PhysRevB.52.R17017
Zabet-Khosousi, A. & Dhirani, A.-A. Charge transport in nanoparticle assemblies. Chem. Rev. 108, 4072–4124 (2008).
pubmed: 18811216
doi: 10.1021/cr0680134
pmcid: 18811216
Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).
pubmed: 19958036
doi: 10.1021/cr900137k
pmcid: 19958036
Bozyigit, D., Yarema, O. & Wood, V. Origins of low quantum efficiencies in quantum dot LEDs. Adv. Funct. Mater. 23, 3024–3029 (2013).
doi: 10.1002/adfm.201203191
Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).
pubmed: 28321128
doi: 10.1038/nature21424
pmcid: 28321128
Lim, J., Park, Y.-S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2017).
pubmed: 29180770
doi: 10.1038/nmat5011
pmcid: 29180770
Zhang, Z. et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 30, 1801387 (2018).
doi: 10.1002/adma.201801387
Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, New York, 2006).