Nephrectomy Does not Exacerbate Cancellous Bone loss in Thalassemic Mice.
Animals
Biomarkers
Bone Density
Cancellous Bone
/ diagnostic imaging
Disease Models, Animal
Erythrocytes
/ metabolism
Femur
Fibroblast Growth Factor-23
Fibrosis
Kidney Diseases
/ etiology
Mice
Mice, Knockout
Nephrectomy
/ adverse effects
Nitrogen
/ urine
Osteoblasts
/ metabolism
Osteoclasts
/ metabolism
Osteoporosis
/ etiology
Thalassemia
/ complications
X-Ray Microtomography
beta-Thalassemia
/ blood
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
08 05 2020
08 05 2020
Historique:
received:
19
09
2019
accepted:
20
04
2020
entrez:
10
5
2020
pubmed:
10
5
2020
medline:
2
12
2020
Statut:
epublish
Résumé
Patients with β-thalassemia have an increased risk of developing chronic kidney disease which is associated with osteoporosis and periodontitis. The purpose of this study was to evaluate mandibular and femoral bone change in heterozygous β-globin knockout (BKO) mice following 5/6 nephrectomy (Nx). Female and male BKO mouse blood smears demonstrated microcytic hypochromic anemia. Serum urea nitrogen, creatinine, calcium, and phosphorus levels were not changed in BKO mice. Nx increased the serum levels of urea nitrogen in both wild type (WT) and BKO mice and the level was much higher in BKO males. Serum level of creatinine was increased in Nx WT but not BKO mice. However, serum calcium and phosphorus levels were not altered. Nx induced comparable renal fibrosis in BKO mice and WT controls. Bone loss was observed in mandibular cancellous bone but not cortical bone of both male and female BKO mice. Nx decreased cancellous bone volume and cortical thickness in WT. Interestingly, BKO mice were resistant to Nx-induced cancellous bone loss. However, cortical thickness and cortical bone mineral density were reduced in Nx male BKO mice. Nx increased mRNA levels of type I collagen, Osx and Trap in WT but not BKO mice. Similarly, Nx reduced cancellous bone volume in femurs and increased osteoblast number and osteoclast number in WT not BKO mice. Serum FGF23 and erythropoietin levels were markedly increased in BKO mice. Nx decreased serum erythropoietin but not FGF23 levels. Since WT treated with erythropoietin exhibited a significant reduction in cancellous bone volume, it was possible that lower level of erythropoietin in Nx BKO mice prevented the Nx-induced cancellous bone loss.
Identifiants
pubmed: 32385316
doi: 10.1038/s41598-020-64681-2
pii: 10.1038/s41598-020-64681-2
pmc: PMC7210954
doi:
Substances chimiques
Biomarkers
0
Fgf23 protein, mouse
0
Fibroblast Growth Factor-23
7Q7P4S7RRE
Nitrogen
N762921K75
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7786Références
Rachmilewitz, E. A. & Giardina, P. J. How I treat thalassemia. Blood 118, 3479–3488 (2011).
pubmed: 21813448
pmcid: 21813448
doi: 10.1182/blood-2010-08-300335
Borgna-Pignatti, C. et al. Cardiac morbidity and mortality in deferoxamine- or deferiprone-treated patients with thalassemia major. Blood 107, 3733–3737 (2006).
pubmed: 16373663
doi: 10.1182/blood-2005-07-2933
Berdoukas, V. et al. The efficacy of iron chelator regimes in reducing cardiac and hepatic iron in patients with thalassaemia major: a clinical observational study. J. Cardiovasc. Magn. Reson. 11, 20 (2009).
pubmed: 19558722
pmcid: 2713224
doi: 10.1186/1532-429X-11-20
Ziyadeh, F. N. et al. Glomerular hyperfiltration and proteinuria in transfusion-independent patients with beta-thalassemia intermedia. Nephron Clin. Pract. 121, c136–143 (2012).
pubmed: 23235469
Bover, J. & Cozzolino, M. Mineral and bone disorders in chronic kidney disease and end-stage renal disease patients: new insights into vitamin D receptor activation. Kidney Int Suppl (2011) 1, 122–129 (2011).
doi: 10.1038/kisup.2011.28
Ott, S. M. Therapy for patients with CKD and low bone mineral density. Nat Rev Nephrol 9, 681–692 (2013).
pubmed: 24100401
doi: 10.1038/nrneph.2013.182
Vogiatzi, M. G. et al. Bone disease in thalassemia: a frequent and still unresolved problem. J. Bone Miner. Res. 24, 543–557 (2009).
pubmed: 18505376
doi: 10.1359/jbmr.080505
Wong, P., Fuller, P. J., Gillespie, M. T. & Milat, F. Bone Disease in Thalassemia: A Molecular and Clinical Overview. Endocr. Rev. 37, 320–346 (2016).
pubmed: 27309522
doi: 10.1210/er.2015-1105
Akcali, A. et al. The Association Between Thalassemia Major and Periodontal Health. J. Periodontol. 86, 1047–1057 (2015).
pubmed: 25968958
doi: 10.1902/jop.2015.140639
Gavalda, C. et al. Renal hemodialysis patients: oral, salivary, dental and periodontal findings in 105 adult cases. Oral Dis. 5, 299–302 (1999).
pubmed: 10561717
doi: 10.1111/j.1601-0825.1999.tb00093.x
Davidovich, E., Schwarz, Z., Davidovitch, M., Eidelman, E. & Bimstein, E. Oral findings and periodontal status in children, adolescents and young adults suffering from renal failure. J. Clin. Periodontol. 32, 1076–1082 (2005).
pubmed: 16174271
doi: 10.1111/j.1600-051X.2005.00812.x
Karim, M. F., Ismail, M., Hasan, A. M. & Shekhar, H. U. Hematological and biochemical status of Beta-thalassemia major patients in Bangladesh: A comparative analysis. Int J Hematol Oncol Stem Cell Res 10, 7–12 (2016).
pubmed: 27047645
pmcid: 4818791
Akhavan-Niaki, H. et al. Hematologic features of alpha thalassemia carriers. Int J Mol Cell Med 1, 162–167 (2012).
pubmed: 24551772
pmcid: 3920506
Cases, A. et al. Anemia of chronic kidney disease: Protocol of study, management and referral to Nephrology. Nefrologia 38, 8–12 (2018).
pubmed: 29128260
doi: 10.1016/j.nefro.2017.09.004
Voskaridou, E. & Terpos, E. New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br. J. Haematol. 127, 127–139 (2004).
pubmed: 15461618
doi: 10.1111/j.1365-2141.2004.05143.x
Guo, Y. et al. Estrogen Deficiency Leads to Further Bone Loss in the Mandible of CKD Mice. PLoS One 11, e0148804 (2016).
pubmed: 26886008
pmcid: 4757532
doi: 10.1371/journal.pone.0148804
Sun, N. et al. FGF23 neutralization improves bone quality and osseointegration of titanium implants in chronic kidney disease mice. Sci. Rep. 5, 8304 (2015).
pubmed: 25665715
pmcid: 4322353
doi: 10.1038/srep08304
Thongchote, K., Svasti, S., Teerapornpuntakit, J., Krishnamra, N. & Charoenphandhu, N. Running exercise alleviates trabecular bone loss and osteopenia in hemizygous beta-globin knockout thalassemic mice. Am. J. Physiol. Endocrinol. Metab. 306, E1406–1417 (2014).
pubmed: 24780610
doi: 10.1152/ajpendo.00111.2014
pmcid: 24780610
Mahachoklertwattana, P. et al. Bone histomorphometry in children and adolescents with beta-thalassemia disease: iron-associated focal osteomalacia. J. Clin. Endocrinol. Metab. 88, 3966–3972 (2003).
pubmed: 12915694
doi: 10.1210/jc.2002-021548
pmcid: 12915694
Mahachoklertwattana, P. et al. Bone mineral density, biochemical and hormonal profiles in suboptimally treated children and adolescents with beta-thalassaemia disease. Clin. Endocrinol. (Oxf.) 58, 273–279 (2003).
doi: 10.1046/j.1365-2265.2003.01707.x
Sebastian, A. & Loots, G. G. Transcriptional control of Sost in bone. Bone 96, 76–84 (2017).
pubmed: 27771382
doi: 10.1016/j.bone.2016.10.009
Ota, K. et al. Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization. J. Cell. Biochem. 114, 1901–1907 (2013).
pubmed: 23494985
pmcid: 3895454
doi: 10.1002/jcb.24537
Balemans, W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet. 10, 537–543 (2001).
pubmed: 11181578
doi: 10.1093/hmg/10.5.537
Collette, N. M. et al. Targeted deletion of Sost distal enhancer increases bone formation and bone mass. Proc. Natl. Acad. Sci. USA 109, 14092–14097 (2012).
pubmed: 22886088
doi: 10.1073/pnas.1207188109
Voskaridou, E. et al. High circulating sclerostin is present in patients with thalassemia-associated osteoporosis and correlates with bone mineral density. Horm. Metab. Res. 44, 909–913 (2012).
pubmed: 22581647
doi: 10.1055/s-0032-1312618
Hattab, F. N. Periodontal condition and orofacial changes in patients with thalassemia major: a clinical and radiographic overview. J. Clin. Pediatr. Dent. 36, 301–307 (2012).
pubmed: 22838236
doi: 10.17796/jcpd.36.3.45763534u3n44k7w
Al-Wahadni, A. M., Taani, D. Q. & Al-Omari, M. O. Dental diseases in subjects with beta-thalassemia major. Community Dent. Oral Epidemiol. 30, 418–422 (2002).
pubmed: 12453112
doi: 10.1034/j.1600-0528.2002.00012.x
Drew, S. J. & Sachs, S. A. Management of the thalassemia-induced skeletal facial deformity: case reports and review of the literature. J. Oral Maxillofac. Surg. 55, 1331–1339 (1997).
pubmed: 9371131
doi: 10.1016/S0278-2391(97)90197-X
Lee, M. M. et al. Characterization of mandibular bone in a mouse model of chronic kidney disease. J. Periodontol. 81, 300–309 (2010).
pubmed: 20151810
pmcid: 2862731
doi: 10.1902/jop.2009.090379
Hanudel, M. R. et al. Effects of erythropoietin on fibroblast growth factor 23 in mice and humans. Nephrol. Dial. Transplant. 34, 2057–2065 (2019).
pubmed: 30007314
doi: 10.1093/ndt/gfy189
Nisli, G., Kavakli, K., Aydinok, Y., Oztop, S. & Cetingul, N. Serum erythropoietin levels in patients with beta thalassemia major and intermedia. Pediatr. Hematol. Oncol. 14, 161–167 (1997).
pubmed: 9089744
doi: 10.3109/08880019709030902
Mahachoklertwattana, P. et al. Association between bone mineral density and erythropoiesis in Thai children and adolescents with thalassemia syndromes. J. Bone Miner. Metab. 24, 146–152 (2006).
pubmed: 16502122
doi: 10.1007/s00774-005-0661-0
Shiozawa, Y. et al. Erythropoietin couples hematopoiesis with bone formation. PLoS One 5, e10853 (2010).
pubmed: 20523730
pmcid: 2877712
doi: 10.1371/journal.pone.0010853
Singbrant, S. et al. Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. Blood 117, 5631–5642 (2011).
pubmed: 21421837
doi: 10.1182/blood-2010-11-320564
Hiram-Bab, S. et al. Erythropoietin directly stimulates osteoclast precursors and induces bone loss. FASEB J. 29, 1890–1900 (2015).
pubmed: 25630969
doi: 10.1096/fj.14-259085
Steer, K., Stavnichuk, M., Morris, M. & Komarova, S. V. Bone Health in Patients With Hematopoietic Disorders of Bone Marrow Origin: Systematic Review and Meta- Analysis. J. Bone Miner. Res. 32, 731–742 (2017).
pubmed: 27787922
doi: 10.1002/jbmr.3026
Liu, W. C., Tomino, Y. & Lu, K. C. Impacts of Indoxyl Sulfate and p-Cresol Sulfate on Chronic Kidney Disease and Mitigating Effects of AST-120. Toxins (Basel) 10 (2018).
Yang, B. et al. A mouse model for beta 0-thalassemia. Proc. Natl. Acad. Sci. USA 92, 11608–11612 (1995).
pubmed: 8524813
doi: 10.1073/pnas.92.25.11608
Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468–1486 (2010).
pubmed: 20533309
doi: 10.1002/jbmr.141
Lotinun, S. et al. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J. Clin. Invest. 123, 666–681 (2013).
pubmed: 23321671
pmcid: 3561821
Dempster, D. W. et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 28, 2–17 (2013).
pubmed: 23197339
pmcid: 3672237
doi: 10.1002/jbmr.1805
Leelahavanichkul, A. et al. Angiotensin II overcomes strain-dependent resistance of rapid CKD progression in a new remnant kidney mouse model. Kidney Int. 78, 1136–1153 (2010).
pubmed: 20736988
pmcid: 3113489
doi: 10.1038/ki.2010.287