Multi-objective Simulated Annealing Variants to Infer Gene Regulatory Network: A Comparative Study.


Journal

IEEE/ACM transactions on computational biology and bioinformatics
ISSN: 1557-9964
Titre abrégé: IEEE/ACM Trans Comput Biol Bioinform
Pays: United States
ID NLM: 101196755

Informations de publication

Date de publication:
Historique:
pubmed: 10 5 2020
medline: 27 1 2022
entrez: 10 5 2020
Statut: ppublish

Résumé

Gene Regulatory Network (GRN) is formed due to mutual transcriptional regulation within a set of protein coding genes in cellular context of an organism. Computational inference of GRN is important to understand the behavior of each gene in terms of change in its protein production rate (expression level). As Recurrent Neural Network (RNN) is efficient in GRN modeling, a bi-objective RNN formulation has been applied here. Based on Archived Multi Objective Simulated Annealing (AMOSA), four algorithms, namely, AMOSA Revised (AMOSAR), Modified Freezing based AMOSA (AMOFSA), Tabu based AMOSA (AMOTSA) and Modified Freezing and Tabu based AMOSA (AMOFTSA) have been proposed and applied to RNN (treated as GRN) for parameter learning taking four gene expression time series datasets. Comparative studies on the performance of the algorithms (based on each dataset) have been made in terms of the number of GRNs obtained in the final non-dominated front and the performance metrics, namely, recall, precision and f1 score. Two proposed variants, namely, AMOFSA and AMOTSA have been found competitive in performance. Experimental observations and statistical analysis show that, modified algorithms are better than AMOSAR and the state-of-the-art algorithms in respect of the above-mentioned metrics.

Identifiants

pubmed: 32386161
doi: 10.1109/TCBB.2020.2992304
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2612-2623

Auteurs

Articles similaires

Humans Meals Time Factors Female Adult

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Humans Male Female Aged Middle Aged

Classifications MeSH