Mixed-Data Acquisition: Next-Generation Quantitative Proteomics Data Acquisition.


Journal

Journal of proteomics
ISSN: 1876-7737
Titre abrégé: J Proteomics
Pays: Netherlands
ID NLM: 101475056

Informations de publication

Date de publication:
30 06 2020
Historique:
received: 14 01 2020
revised: 01 04 2020
accepted: 02 05 2020
pubmed: 11 5 2020
medline: 22 6 2021
entrez: 11 5 2020
Statut: ppublish

Résumé

We present the Mixed-Data Acquisition (MDA) strategy for mass spectrometry data acquisition. MDA combines Data-Dependent Acquisition (DDA) and Data-Independent Acquisition (DIA) in the same run, thus doing away with the requirements for separate DDA spectral libraries. MDA is a natural result from advances in mass spectrometry, such as high scan rates and multiple analyzers, and is tailored toward exploiting these features. We demonstrate MDA's effectiveness on a yeast proteome analysis by overcoming a common bottleneck for XIC-based label-free quantitation; namely, the coelution of precursors when m/z values cannot be distinguished. We anticipate that MDA will become the next mainstream data generation approach for proteomics. MDA can also serve as an orthogonal validation approach for DDA experiments. Specialized software for MDA data analysis is made available on the project's website.

Identifiants

pubmed: 32387712
pii: S1874-3919(20)30171-8
doi: 10.1016/j.jprot.2020.103803
pii:
doi:

Substances chimiques

Proteome 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

103803

Informations de copyright

Copyright © 2020 Elsevier B.V. All rights reserved.

Auteurs

Marlon D M Santos (MDM)

Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil. Electronic address: marlondms@gmail.com.

Amanda Caroline Camillo-Andrade (AC)

Master Program in Industrial Biotechnology, Positivo University, Curitiba, Paraná, Brazil.

Louise U Kurt (LU)

Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil.

Milan A Clasen (MA)

Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil.

Eduardo Lyra (E)

Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.

Fabio C Gozzo (FC)

Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.

Michel Batista (M)

Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil.

Richard H Valente (RH)

Laboratory of Toxinology, Oswaldo Cruz Institute - Fiocruz, Rio de Janeiro, Brazil.

Giselle V F Brunoro (GVF)

Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil.

Valmir C Barbosa (VC)

Systems Engineering and Computer Science Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

Juliana S G Fischer (JSG)

Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil.

Paulo C Carvalho (PC)

Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil. Electronic address: paulo@pcarvalho.com.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Cephalometry Humans Anatomic Landmarks Software Internet
Humans Algorithms Software Artificial Intelligence Computer Simulation

Classifications MeSH