Compensatory combination of romidepsin with gemcitabine and cisplatin to effectively and safely control urothelial carcinoma.


Journal

British journal of cancer
ISSN: 1532-1827
Titre abrégé: Br J Cancer
Pays: England
ID NLM: 0370635

Informations de publication

Date de publication:
07 2020
Historique:
received: 27 11 2019
accepted: 15 04 2020
revised: 26 03 2020
pubmed: 12 5 2020
medline: 20 2 2021
entrez: 12 5 2020
Statut: ppublish

Résumé

Human urothelial carcinoma (UC) has a high tendency to recur and progress to life-threatening advanced diseases. Advanced therapeutic regimens are needed to control UC development and recurrence. We pursued in vitro and in vivo studies to understand the ability of a triple combination of gemcitabine, romidepsin, and cisplatin (Gem+Rom+Cis) to modulate signalling pathways, cell death, drug resistance, and tumour development. Our studies verified the ability of Gem+Rom+Cis to synergistically induce apoptotic cell death and reduce drug resistance in various UC cells. The ERK pathway and reactive oxygen species (ROS) played essential roles in mediating Gem+Rom+Cis-induced caspase activation, DNA oxidation and damage, glutathione reduction, and unfolded protein response. Gem+Rom+Cis preferentially induced death and reduced drug resistance in oncogenic H-Ras-expressing UC vs. counterpart cells that was associated with transcriptomic profiles related to ROS, cell death, and drug resistance. Our studies also verified the efficacy and safety of the Gem plus Rom+Cis regimen in controlling UC cell-derived xenograft tumour development and resistance. More than 80% of UCs are associated with aberrant Ras-ERK pathway. Thus the compensatory combination of Rom with Gem and Cis should be seriously considered as an advanced regimen for treating advanced UCs, especially Ras-ERK-activated UCs.

Sections du résumé

BACKGROUND
Human urothelial carcinoma (UC) has a high tendency to recur and progress to life-threatening advanced diseases. Advanced therapeutic regimens are needed to control UC development and recurrence.
METHODS
We pursued in vitro and in vivo studies to understand the ability of a triple combination of gemcitabine, romidepsin, and cisplatin (Gem+Rom+Cis) to modulate signalling pathways, cell death, drug resistance, and tumour development.
RESULTS
Our studies verified the ability of Gem+Rom+Cis to synergistically induce apoptotic cell death and reduce drug resistance in various UC cells. The ERK pathway and reactive oxygen species (ROS) played essential roles in mediating Gem+Rom+Cis-induced caspase activation, DNA oxidation and damage, glutathione reduction, and unfolded protein response. Gem+Rom+Cis preferentially induced death and reduced drug resistance in oncogenic H-Ras-expressing UC vs. counterpart cells that was associated with transcriptomic profiles related to ROS, cell death, and drug resistance. Our studies also verified the efficacy and safety of the Gem plus Rom+Cis regimen in controlling UC cell-derived xenograft tumour development and resistance.
CONCLUSIONS
More than 80% of UCs are associated with aberrant Ras-ERK pathway. Thus the compensatory combination of Rom with Gem and Cis should be seriously considered as an advanced regimen for treating advanced UCs, especially Ras-ERK-activated UCs.

Identifiants

pubmed: 32390005
doi: 10.1038/s41416-020-0877-8
pii: 10.1038/s41416-020-0877-8
pmc: PMC7374627
doi:

Substances chimiques

Depsipeptides 0
Reactive Oxygen Species 0
Deoxycytidine 0W860991D6
romidepsin CX3T89XQBK
Cisplatin Q20Q21Q62J
Gemcitabine 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

226-239

Subventions

Organisme : NCI NIH HHS
ID : R21 CA177834
Pays : United States
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : CA177834

Références

American Cancer Society. Cancer Facts & Figures 2019. http://www.cancer.org/research/cancerfactsfigures/index (2019).
Kamat, A. M., Hahn, N. M., Efstathiou, J. A., Lerner, S. P., Malmström, P. U., Choi, W. et al. Bladder cancer. Lancet 388, 2796–2810 (2016).
pubmed: 27345655 doi: 10.1016/S0140-6736(16)30512-8
Massari, F., Santoni, M., Ciccarese, C., Brunelli, M., Conti, A., Santini, D. et al. Emerging concepts on drug resistance in bladder cancer: Implications for future strategies. Crit. Rev. Oncol. Hematol. 96, 81–90 (2015).
pubmed: 26022449 doi: 10.1016/j.critrevonc.2015.05.005
Teply, B. A. & Kim, J. J. Systemic therapy for bladder cancer - a medical oncologist’s perspective. J. Solid Tumors 4, 25–35 (2014).
pubmed: 25404954 pmcid: 4232954 doi: 10.5430/jst.v4n2p25
von der Maase, H., Sengelov, L., Roberts, J. T., Ricci, S., Dogliotti, L., Oliver, T. et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J. Clin. Oncol. 23, 4602–4608 (2015).
doi: 10.1200/JCO.2005.07.757
Cognetti, F., Ruggeri, E. M., Felici, A., Gallucci, M., Muto, G., Pollera, C. F. et al. Adjuvant chemotherapy with cisplatin and gemcitabine versus chemotherapy at relapse in patients with muscle-invasive bladder cancer submitted to radical cystectomy: an Italian, multicenter, randomized phase III trial. Ann. Oncol. 23, 695–700 (2012).
pubmed: 21859900 doi: 10.1093/annonc/mdr354
Ramos, P. & Bentires-Alj, M. Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene 34, 3617–3626 (2015).
pubmed: 25263438 doi: 10.1038/onc.2014.314
Gifford, J. B., Huang, W., Zeleniak, A. E., Hindoyan, A., Wu, H., Donahue, T. R. et al. Expression of GRP78, master regulator of the unfolded protein response, increases chemoresistance in pancreatic ductal adenocarcinoma. Mol. Cancer Ther. 15, 1043–1052 (2016).
pubmed: 26939701 doi: 10.1158/1535-7163.MCT-15-0774
Sau, A., Pellizzari Tregno, F., Valentino, F., Federici, G. & Caccuri, A. M. Glutathione transferases and development of new principles to overcome drug resistance. Arch. Biochem. Biophys. 500, 116–122 (2010).
pubmed: 20494652 doi: 10.1016/j.abb.2010.05.012
Bidnur, S., Savdie, R. & Black, P. C. Inhibiting immune checkpoints for the treatment of bladder cancer. Bladder Cancer 2, 15–25 (2016).
pubmed: 27376121 pmcid: 4927995 doi: 10.3233/BLC-150026
Xu, Y., Poggio, M., Jin, H. Y., Shi, Z., Forester, C. M., Wang, Y. et al. Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat. Med. 25, 301–311 (2019).
pubmed: 30643286 pmcid: 6613562 doi: 10.1038/s41591-018-0321-2
Choudhary, S., Sood, S. & Wang, H. C. Synergistic induction of cancer cell death and reduction of clonogenic resistance by cisplatin and FK228. Biochem. Biophys. Res. Commun. 436, 325–330 (2013).
pubmed: 23743194 doi: 10.1016/j.bbrc.2013.05.102
Ueda, H., Nakajima, H., Hori, Y., Goto, T. & Okuhara, M. Action of FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum no. 968, on Ha-ras transformed NIH3T3 cells. Biosci. Biotechnol. Biochem. 58, 1579–1583 (1994).
pubmed: 7765477 doi: 10.1271/bbb.58.1579
Bertino, E. M. & Otterson, G. A. Romidepsin: a novel histone deacetylase inhibitor for cancer. Expert Opin. Investig. Drugs 20, 1151–1158 (2011).
pubmed: 21699444 doi: 10.1517/13543784.2011.594437
Tan, J., Cang, S., Ma, Y., Petrillo, R. L. & Liu, D. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J. Hematol. Oncol. 3, 5 (2010).
pubmed: 20132536 pmcid: 2827364 doi: 10.1186/1756-8722-3-5
Choudhary, S. & Wang, H. C. Proapoptotic ability of oncogenic H-Ras to facilitate apoptosis induced by histone deacetylase inhibitors in human cancer cells. Mol. Cancer Ther. 6, 1099–1111 (2007).
pubmed: 17363503 doi: 10.1158/1535-7163.MCT-06-0586
Choudhary, S. & Wang, H. C. Role of reactive oxygen species in proapoptotic ability of oncogenic H-Ras to increase human bladder cancer cell susceptibility to histone deacetylase inhibitor for caspase induction. J. Cancer Res. Clin. Oncol. 135, 1601–1613 (2009).
pubmed: 19506904 doi: 10.1007/s00432-009-0608-2
Choudhary, S., Rathore, K. & Wang, H. C. FK228 and oncogenic H-Ras synergistically induce Mek1/2 and Nox-1 to generate reactive oxygen species for differential cell death. Anticancer Drugs 21, 831–840 (2010).
pubmed: 20700043 doi: 10.1097/CAD.0b013e32833ddba6
Choudhary, S., Rathore, K. & Wang, H. C. Differential induction of reactive oxygen species through Erk1/2 and Nox-1 by FK228 for preferential apoptosis of oncogenic H-Ras-expressing human urinary bladder cancer J82 cells. J. Cancer Res. Clin. Oncol. 137, 471–480 (2011).
pubmed: 20473523 doi: 10.1007/s00432-010-0910-z
Choudhary, S., Wang, K. K. & Wang, H. C. Oncogenic H-Ras, FK228, and exogenous H
pubmed: 21344509 doi: 10.1002/mc.20708
Pluchino, L. A., Choudhary, S. & Wang, H. C. Reactive oxygen species-mediated synergistic and preferential induction of cell death and reduction of clonogenic resistance in breast cancer cells by combined cisplatin and FK228. Cancer Lett. 381, 124–132 (2016).
pubmed: 27477899 doi: 10.1016/j.canlet.2016.07.036
Olive, P. L. & Banath, J. P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29 (2006).
pubmed: 17406208 doi: 10.1038/nprot.2006.5
Collins, A. R., Duthie, S. J. & Dobson, V. L. Direct enzymatic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis 14, 1733–1735 (1993).
pubmed: 8403192 doi: 10.1093/carcin/14.9.1733
John, B. A., Xu, T., Ripp, S. & Wang, H. C. A real-time non-invasive auto-bioluminescent urinary bladder cancer xenograft model. Mol. Imaging Biol. 19, 10–14 (2016).
doi: 10.1007/s11307-016-0989-y
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651 pmcid: 3037419 doi: 10.1038/75556
Simes, R. J. An improved Bonferroni procedure for multiple tests of significance. Biometrika 73, 751–754 (1986).
doi: 10.1093/biomet/73.3.751
Chou, T. C. & Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzym. Regul. 22, 27–55 (1984).
doi: 10.1016/0065-2571(84)90007-4
Yin, T., Zhang, Z., Cao, B., Duan, Q., Shi, P., Zhao, H. et al. Bmi1 inhibition enhances the sensitivity of pancreatic cancer cells to gemcitabine. Oncotarget 7, 37192–37204 (2016).
pubmed: 27177084 pmcid: 5095068 doi: 10.18632/oncotarget.9293
Ju, H. Q., Gocho, T., Aguilar, M., Wu, M., Zhuang, Z. N., Fu, J. et al. Mechanisms of overcoming intrinsic resistance to gemcitabine in pancreatic ductal adenocarcinoma through the Redox Modulation. Mol. Cancer Ther. 14, 788–798 (2015).
pubmed: 25527634 doi: 10.1158/1535-7163.MCT-14-0420
Valdez, B. C., Brammer, J. E., Li, Y., Murray, D., Teo, E. C., Liu, Y. et al. Romidepsin enhances the cytotoxicity of fludarabine, clofarabine and busulfan combination in malignant T-cells. Leuk. Res. 47, 100–108 (2016).
pubmed: 27294334 pmcid: 4961533 doi: 10.1016/j.leukres.2016.05.019
Miyajima, A., Nakashima, J., Tachibana, M., Nakamura, K., Hayakawa, M. & Murai, M. N-acetylcysteine modifies cis-dichlorodiammineplatinum-induced effects in bladder cancer cells. Jpn. J. Cancer Res. 90, 565–570 (1999).
pubmed: 10391097 pmcid: 5926102 doi: 10.1111/j.1349-7006.1999.tb00784.x
Kim, H. J., Lee, J. H., Kim, S. J., Oh, G. S., Moon, H. D., Kwon, K. B. et al. Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity. J. Neurosci. 30, 3933–3946 (2010).
pubmed: 20237264 pmcid: 6632278 doi: 10.1523/JNEUROSCI.6054-09.2010
Hecht, F., Pessoa, C. F., Gentile, L. B., Rosenthal, D., Carvalho, D. P. & Fortunato, R. S. The role of oxidative stress on breast cancer development and therapy. Tumor Biol. 37, 4281–4291 (2016).
doi: 10.1007/s13277-016-4873-9
Khongkow, P., Middleton, A. W., Wong, J. P., Kandola, N. K., Kongsema, M., de Moraes, G. N. et al. In vitro methods for studying the mechanisms of resistance to DNA-damaging therapeutic drugs. Methods Mol. Biol. 1395, 39–53 (2016).
pubmed: 26910067 doi: 10.1007/978-1-4939-3347-1_3
Siddik, Z. H. Cisplatin: mode of action and molecular basis of resistance. Oncogene 22, 7265–7279 (2003).
pubmed: 14576837 doi: 10.1038/sj.onc.1206933
Wang, H. C. & Choudhary, S. Reactive oxygen species-mediated therapeutic control of bladder cancer. Nat. Rev. Urol. 8, 608–616 (2001).
doi: 10.1038/nrurol.2011.135
Chuang, J. I., Chang, T. Y. & Liu, H. S. Glutathione depletion-induced apoptosis of H-Ras-transformed NIH3T3 cells can be prevented by melatonin. Oncogene 22, 1349–1357 (2003).
pubmed: 12618760 doi: 10.1038/sj.onc.1206289
Wang, Y. Y., Chen, W. H., Xiao, P. P., Xie, W., Luo, Q., Bork, P. et al. GEAR: a database of genomic elements associated with drug resistance. Sci. Rep. 7, 44085 (2017).
pubmed: 28294141 pmcid: 5353689 doi: 10.1038/srep44085
Yan, M. M., Ni, J. D., Song, D., Ding, M. & Huang, J. Interplay between unfolded protein response and autophagy promotes tumor drug resistance. Oncol. Lett. 10, 1959–1969 (2015).
pubmed: 26622781 pmcid: 4579870 doi: 10.3892/ol.2015.3508
Casas, C. GRP78 at the centre of the stage in cancer and neuroprotection. Front. Neurosci. 11, 177 (2017).
pubmed: 28424579 pmcid: 5380735 doi: 10.3389/fnins.2017.00177
Piekarz, R. L., Frye, R., Prince, H. M., Kirschbaum, M. H., Zain, J., Allen, S. L. et al. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood 117, 5827–5834 (2011).
pubmed: 21355097 pmcid: 3112033 doi: 10.1182/blood-2010-10-312603
DTP/DCTD/NCI/NIH/DHHS. Equivalent surface area dosage conversion factors. http://dtp.nci.nih.gov (2007).
Faustino-Rocha, A., Oliveira, P. A., Pinho-Oliveira, J., Teixeira-Guedes, C., Soares-Maia, R., da Costa, R. G. et al. Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab. Anim. 42, 217–224 (2013).
doi: 10.1038/laban.254
The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).
doi: 10.1038/nature12965
He, F., Melamed, J., Tang, M. S., Huang, C. & Wu, X. R. Oncogenic HRAS activates epithelial-to-mesenchymal transition and confers stemness to p53-deficient urothelial cells to drive muscle invasion of basal subtype carcinomas. Cancer Res. 75, 2017–2028 (2015).
pubmed: 25795707 pmcid: 4433590 doi: 10.1158/0008-5472.CAN-14-3067
Sarkisian, S. & Davar, D. MEK inhibitors for the treatment of NRAS mutant melanoma. Drug Des. Dev. Ther. 12, 2553–2565 (2018).
doi: 10.2147/DDDT.S131721
Heinzerling, L., Eigentler, T. K., Fluck, M., Hassel, J. C., Heller-Schenck, D., Leipe, J. et al. Tolerability of BRAF/MEK inhibitor combinations: adverse event evaluation and management. ESMO Open 4, e000491 (2019).
pubmed: 31231568 pmcid: 6555610 doi: 10.1136/esmoopen-2019-000491
Sun, J., Zager, J. S. & Eroglu, Z. Encorafenib/binimetinib for the treatment of BRAF-mutant advanced, unresectable, or metastatic melanoma: design, development, and potential place in therapy. Onco Targets Ther. 11, 9081–9089 (2018).
pubmed: 30588020 pmcid: 6299465 doi: 10.2147/OTT.S171693
Choudhary, S. & Wang, H. R. Pro-apoptotic activity of oncogenic H-Ras for histone deacetylase inhibitor to induce apoptosis of human cancer HT29 cells. J. Cancer Res. Clin. Oncol. 133, 725–739 (2007).
pubmed: 17487507 doi: 10.1007/s00432-007-0213-1
Choi, Y. M., Kim, H. K., Shim, W., Anwar, M. A., Kwon, J. W., Kwon, H. K. et al. Mechanism of cisplatin-induced cytotoxicity is correlated to impaired metabolism due to mitochondrial ROS generation. PLoS ONE 10, e0135083 (2015).
pubmed: 26247588 pmcid: 4527592 doi: 10.1371/journal.pone.0135083
Jones, R. M., Kotsantis, P., Stewart, G. S., Groth, P. & Petermann, E. BRCA2 and RAD51 promote double-strand break formation and cell death in response to gemcitabine. Mol. Cancer Ther. 13, 2412–2421 (2014).
pubmed: 25053826 pmcid: 4185294 doi: 10.1158/1535-7163.MCT-13-0862
Rudin, C. M., Yang, Z., Schumaker, L. M., VanderWeele, D. J., Newkirk, K., Egorin, M. J. et al. Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistance. Cancer Res. 63, 312–318 (2003).
pubmed: 12543781
Godwin, A. K., Meister, A., O’Dwyer, P., Huang, C. S., Hamilton, T. C. & Anderson, M. E. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc. Natl Acad. Sci. USA 89, 3070–3074 (1992).
pubmed: 1348364 doi: 10.1073/pnas.89.7.3070 pmcid: 48805
Gifford, J. B. & Hill, R. GRP78 influences chemoresistance and prognosis in cancer. Curr. Drug Targets 19, 701–708 (2018).
pubmed: 28641518 doi: 10.2174/1389450118666170615100918
Chern, Y. J., Wong, J. C. T., Cheng, G. S. W., Yu, A., Yin, Y., Schaeffer, D. F. et al. The interaction between SPARC and GRP78 interferes with ER stress signaling and potentiates apoptosis via PERK/eIF2α and IRE1α/XBP-1 in colorectal cancer. Cell Death Dis. 10, 504 (2019).
pubmed: 31243264 pmcid: 6594974 doi: 10.1038/s41419-019-1687-x
Burikhanov, R., Zhao, Y., Goswami, A., Qiu, S., Schwarze, S. R. & Rangnekar, V. M. The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138, 377–388 (2009).
pubmed: 19632185 pmcid: 2774252 doi: 10.1016/j.cell.2009.05.022
Wang, J., Li, Y., Ma, F., Zhou, H., Ding, R., Lu, B. et al. Inhibitory effect of Par-4 combined with cisplatin on human Wilms’ tumor cells. Tumor Biol. 39, 1010428317716689 (2017).
Qiu, S. G., Krishnan, S., el-Guendy, N. & Rangnekar, V. M. Negative regulation of Par-4 by oncogenic Ras is essential for cellular transformation. Oncogene 18, 7115–7123 (1999).
pubmed: 10597313 doi: 10.1038/sj.onc.1203199
Mabe, N. W., Fox, D. B., Lupo, R., Decker, A. E., Phelps, S. N., Thompson, J. W. et al. Epigenetic silencing of tumor suppressor Par-4 promotes chemoresistance in recurrent breast cancer. J. Clin. Invest. 128, 4413–4428 (2018).
pubmed: 30148456 pmcid: 6159989 doi: 10.1172/JCI99481
von der Masse, H. Gemcitabine and cisplatin in locally advanced and/or metastatic bladder cancer. Eur. J. Cancer 36, 13–16 (2000).
doi: 10.1016/S0959-8049(00)00080-0
Roberts, J. T., von der Maase, H., Sengeløv, L., Conte, P. F., Dogliotti, L., Oliver, T. et al. Long-term survival results of a randomized trial comparing gemcitabine/cisplatin and methotrexate/vinblastine/doxorubicin/cisplatin in patients with locally advanced and metastatic bladder cancer. Ann. Oncol. 17, 118–122 (2006).
doi: 10.1093/annonc/mdj965
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
pubmed: 22930834 pmcid: 5554542 doi: 10.1038/nmeth.2089

Auteurs

Pawat Pattarawat (P)

Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.
UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.

Tian Hong (T)

Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.

Shelby Wallace (S)

Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.

Yanchun Hu (Y)

Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.
College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.

Robert Donnell (R)

Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.

Tzu-Hao Wang (TH)

Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.

Chia-Lung Tsai (CL)

Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.

Jinquan Wang (J)

Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.
College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China.

Hwa-Chain Robert Wang (HR)

Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA. hcrwang@utk.edu.
UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA. hcrwang@utk.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH