XynDZ5: A New Thermostable GH10 Xylanase.

biocatalysis biotechnology genome analysis mode of action thermostability xylanase

Journal

Frontiers in microbiology
ISSN: 1664-302X
Titre abrégé: Front Microbiol
Pays: Switzerland
ID NLM: 101548977

Informations de publication

Date de publication:
2020
Historique:
received: 14 09 2019
accepted: 12 03 2020
entrez: 12 5 2020
pubmed: 12 5 2020
medline: 12 5 2020
Statut: epublish

Résumé

Xylanolytic enzymes have a broad range of applications in industrial biotechnology as biocatalytic components of various processes and products, such as food additives, bakery products, coffee extraction, agricultural silage and functional foods. An increasing market demand has driven the growing interest for the discovery of xylanases with specific industrially relevant characteristics, such as stability at elevated temperatures and in the presence of other denaturing factors, which will facilitate their incorporation into industrial processes. In this work, we report the discovery and biochemical characterization of a new thermostable GH10 xylanase, termed XynDZ5, exhibiting only 26% amino acid sequence identity to the closest characterized xylanolytic enzyme. This new enzyme was discovered in an Icelandic hot spring enrichment culture of a

Identifiants

pubmed: 32390953
doi: 10.3389/fmicb.2020.00545
pmc: PMC7193231
doi:

Types de publication

Journal Article

Langues

eng

Pagination

545

Informations de copyright

Copyright © 2020 Zarafeta, Galanopoulou, Leni, Kaili, Chegkazi, Chrysina, Kolisis, Hatzinikolaou and Skretas.

Références

Appl Microbiol Biotechnol. 2007 Feb;74(2):339-46
pubmed: 17115208
Nat Methods. 2015 Jan;12(1):7-8
pubmed: 25549265
Braz J Microbiol. 2012 Jul;43(3):844-56
pubmed: 24031898
Appl Microbiol Biotechnol. 2016 Oct;100(20):8731-43
pubmed: 27207145
World J Microbiol Biotechnol. 2012 Sep;28(9):2889-902
pubmed: 22806730
3 Biotech. 2016 Dec;6(2):150
pubmed: 28330222
Biotechnol Adv. 2018 Dec;36(8):2077-2100
pubmed: 30266344
Bioresour Technol. 2019 Apr;277:195-203
pubmed: 30679061
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Curr Opin Microbiol. 2003 Jun;6(3):219-28
pubmed: 12831897
Appl Environ Microbiol. 1992 Jan;58(1):157-68
pubmed: 1539970
Nat Protoc. 2015 Jun;10(6):845-58
pubmed: 25950237
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Methods Mol Biol. 2018;1796:3-23
pubmed: 29856042
Plant Sci. 2015 May;234:180-93
pubmed: 25804821
Biotechnol Adv. 2012 Nov-Dec;30(6):1219-27
pubmed: 22138412
Gene. 1994 Dec 30;151(1-2):131-5
pubmed: 7828861
Front Microbiol. 2016 Nov 16;7:1779
pubmed: 27899916
J Biol Chem. 2004 Mar 19;279(12):11777-88
pubmed: 14670951
J Bacteriol. 1988 Oct;170(10):4582-8
pubmed: 3139632
Nat Methods. 2011 Sep 29;8(10):785-6
pubmed: 21959131
Recent Pat Biotechnol. 2013 Dec;7(3):207-18
pubmed: 24182321
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37
pubmed: 21593126
Appl Biochem Biotechnol. 2014 Sep;174(1):81-92
pubmed: 25080375
Sci Rep. 2016 Dec 19;6:38886
pubmed: 27991516
World J Microbiol Biotechnol. 2016 Feb;32(2):34
pubmed: 26754672
Front Genet. 2019 May 24;10:469
pubmed: 31178894
Crit Rev Biotechnol. 2018 Nov;38(7):989-1002
pubmed: 29343191
Biochemistry (Mosc). 1997 Jan;62(1):66-70
pubmed: 9113732
FEMS Microbiol Lett. 2000 Feb 1;183(1):1-7
pubmed: 10650194
PLoS One. 2016 Jan 07;11(1):e0146454
pubmed: 26741138
J Mol Biol. 2001 Jan 19;305(3):567-80
pubmed: 11152613
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51
pubmed: 22645317
J Bacteriol. 1993 Sep;175(18):5890-8
pubmed: 8376336
Genome Res. 2007 Mar;17(3):377-86
pubmed: 17255551
J Ind Microbiol Biotechnol. 2003 May;30(5):279-91
pubmed: 12698321
ISRN Microbiol. 2012 Sep 05;2012:517524
pubmed: 23762752
FEMS Microbiol Rev. 2005 Jan;29(1):3-23
pubmed: 15652973
Appl Microbiol Biotechnol. 2016 Sep;100(17):7577-90
pubmed: 27142296
Biochimie. 2009 Sep;91(9):1187-96
pubmed: 19567261
J Ind Microbiol Biotechnol. 2014 Jul;41(7):1071-83
pubmed: 24818699
Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7090-4
pubmed: 7624375
Biotechnol Adv. 2012 May-Jun;30(3):564-92
pubmed: 22067746
Biotechnol Biofuels. 2013 Dec 02;6(1):179
pubmed: 24295562

Auteurs

Dimitra Zarafeta (D)

Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.

Anastasia P Galanopoulou (AP)

Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
Department of Biology, Enzyme and Microbial Biotechnology Unit, National and Kapodistrian University of Athens, Athens, Greece.

Maria Evangelia Leni (ME)

Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.

Stavroula I Kaili (SI)

Department of Biology, Enzyme and Microbial Biotechnology Unit, National and Kapodistrian University of Athens, Athens, Greece.

Magda S Chegkazi (MS)

Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.

Evangelia D Chrysina (ED)

Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.

Fragiskos N Kolisis (FN)

Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.

Dimitris G Hatzinikolaou (DG)

Department of Biology, Enzyme and Microbial Biotechnology Unit, National and Kapodistrian University of Athens, Athens, Greece.

Georgios Skretas (G)

Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.

Classifications MeSH