Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium
3-Hydroxypropionic acid
Artificial consortium
Cyanobacteria
Symbiotic
Journal
Biotechnology for biofuels
ISSN: 1754-6834
Titre abrégé: Biotechnol Biofuels
Pays: England
ID NLM: 101316935
Informations de publication
Date de publication:
2020
2020
Historique:
received:
30
01
2020
accepted:
24
04
2020
entrez:
12
5
2020
pubmed:
12
5
2020
medline:
12
5
2020
Statut:
epublish
Résumé
Cyanobacterial carbohydrates, such as sucrose, have been considered as potential renewable feedstock to support the production of fuels and chemicals. However, the separation and purification processes of these carbohydrates will increase the production cost of chemicals. Co-culture fermentation has been proposed as an efficient and economical way to utilize these cyanobacterial carbohydrates. However, studies on the application of co-culture systems to achieve green biosynthesis of platform chemicals are still rare. In this study, we successfully achieved one-step conversion of sucrose derived from cyanobacteria to fine chemicals by constructing a microbial consortium consisting of the fast-growing cyanobacterium The study demonstrated the feasibility of the one-step conversion of sucrose to fine chemicals using an artificial consortium system. The study also confirmed that heterotrophic bacteria could promote the cell growth of cyanobacteria by relieving oxidative stress in this microbial consortium, which further suggests the potential value of this system for future industrial applications.
Sections du résumé
BACKGROUND
BACKGROUND
Cyanobacterial carbohydrates, such as sucrose, have been considered as potential renewable feedstock to support the production of fuels and chemicals. However, the separation and purification processes of these carbohydrates will increase the production cost of chemicals. Co-culture fermentation has been proposed as an efficient and economical way to utilize these cyanobacterial carbohydrates. However, studies on the application of co-culture systems to achieve green biosynthesis of platform chemicals are still rare.
RESULTS
RESULTS
In this study, we successfully achieved one-step conversion of sucrose derived from cyanobacteria to fine chemicals by constructing a microbial consortium consisting of the fast-growing cyanobacterium
CONCLUSION
CONCLUSIONS
The study demonstrated the feasibility of the one-step conversion of sucrose to fine chemicals using an artificial consortium system. The study also confirmed that heterotrophic bacteria could promote the cell growth of cyanobacteria by relieving oxidative stress in this microbial consortium, which further suggests the potential value of this system for future industrial applications.
Identifiants
pubmed: 32391082
doi: 10.1186/s13068-020-01720-0
pii: 1720
pmc: PMC7201998
doi:
Types de publication
Journal Article
Langues
eng
Pagination
82Informations de copyright
© The Author(s) 2020.
Déclaration de conflit d'intérêts
Competing interestsThe authors declare no competing financial interests.
Références
Bioresour Technol. 2017 Oct;241:1127-1137
pubmed: 28651870
Nat Microbiol. 2017 Jun 26;2:17100
pubmed: 28650444
Appl Environ Microbiol. 2012 Apr;78(8):2660-8
pubmed: 22307292
Microb Biotechnol. 2020 Feb 16;:
pubmed: 32064751
Microb Cell Fact. 2017 Jun 6;16(1):98
pubmed: 28587617
J Microbiol Methods. 2011 Jun;85(3):221-7
pubmed: 21440012
J Phycol. 2013 Dec;49(6):1223-8
pubmed: 27007639
Metab Eng. 2015 Jan;27:57-64
pubmed: 25447643
Metab Eng. 2017 Nov;44:236-245
pubmed: 29061492
Sci Rep. 2020 Jan 15;10(1):390
pubmed: 31942010
mSystems. 2017 Mar 7;2(2):
pubmed: 28289730
Sheng Wu Gong Cheng Xue Bao. 2019 Aug 25;35(8):1411-1423
pubmed: 31441612
Appl Environ Microbiol. 2018 Jan 2;84(2):
pubmed: 29101204
FEMS Microbiol Rev. 2011 Jan;35(1):87-123
pubmed: 20618868
J Bacteriol. 1985 May;162(2):661-7
pubmed: 3886630
J Biol Chem. 1978 Sep 25;253(18):6445-20
pubmed: 210184
Appl Environ Microbiol. 2004 Dec;70(12):7277-87
pubmed: 15574927
PLoS One. 2013 Sep 20;8(9):e75554
pubmed: 24073271
Front Microbiol. 2016 Oct 24;7:1662
pubmed: 27822204
Sci Rep. 2015 Jan 30;5:8132
pubmed: 25633131
Crit Rev Biotechnol. 2017 Nov;37(7):933-941
pubmed: 28078904
Appl Environ Microbiol. 2013 Jan;79(2):478-87
pubmed: 23124236
Methods Enzymol. 1988;167:747-54
pubmed: 3148842
Science. 2015 Jun 26;348(6242):1425-7
pubmed: 26113703
Front Microbiol. 2019 Sep 13;10:2139
pubmed: 31572343
Metab Eng. 2015 Sep;31:163-70
pubmed: 26278506
Arch Biochem Biophys. 1985 Nov 15;243(1):144-9
pubmed: 3904630
Appl Microbiol Biotechnol. 2005 May;67(3):312-21
pubmed: 15660210
Metab Eng. 2013 Mar;16:130-9
pubmed: 23376595
J Cell Biol. 1977 May;73(2):400-18
pubmed: 870501
Bacteriol Rev. 1971 Jun;35(2):171-205
pubmed: 4998365
Antioxidants (Basel). 2019 Sep 09;8(9):
pubmed: 31505852
Biochem Biophys Res Commun. 1995 Mar 28;208(3):1116-23
pubmed: 7535526
J Biotechnol. 2012 Feb 20;157(4):633-40
pubmed: 21723339
AMB Express. 2017 Nov 2;7(1):193
pubmed: 29098480
J Biotechnol. 2013 Sep 10;167(3):201-14
pubmed: 23886651
Biotechnol Bioeng. 2010 Jun 15;106(3):462-73
pubmed: 20091733
Metab Eng. 2013 Sep;19:17-25
pubmed: 23721859
Photosynth Res. 2007 Nov-Dec;94(2-3):275-90
pubmed: 17665151
J Bacteriol. 2002 May;184(9):2404-10
pubmed: 11948153
Trends Biotechnol. 2008 Sep;26(9):483-9
pubmed: 18675483
J Biol Eng. 2017 Jan 23;11:4
pubmed: 28127397
Appl Microbiol Biotechnol. 2011 Aug;91(3):471-90
pubmed: 21691792
Metab Eng. 2016 Mar;34:60-70
pubmed: 26546088
Sci Total Environ. 2018 Jun 1;625:320-335
pubmed: 29289780
ACS Synth Biol. 2018 Jan 19;7(1):276-286
pubmed: 29232504
Metab Eng. 2018 Jul;48:163-174
pubmed: 29883802
Appl Microbiol Biotechnol. 2016 Sep;100(18):7865-75
pubmed: 27079574
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Bioresour Technol. 2016 Jan;200:897-904
pubmed: 26606325
J Bacteriol. 1984 Nov;160(2):668-75
pubmed: 6094482
ISME J. 2014 Nov;8(11):2243-55
pubmed: 24781900
Metab Eng. 2014 Mar;22:104-9
pubmed: 24502850
Biotechnol Biofuels. 2017 Jul 19;10:190
pubmed: 28814973
Photosynth Res. 2015 Mar;123(3):285-95
pubmed: 24526260
J Bacteriol. 1984 Feb;157(2):622-6
pubmed: 6319370
Appl Microbiol Biotechnol. 2009 Apr;82(6):995-1003
pubmed: 19221732
Appl Environ Microbiol. 2010 Jun;76(11):3462-6
pubmed: 20363793
J Mol Biol. 2006 May 12;358(4):1051-9
pubmed: 16574149
Plant Cell. 2001 Jan;13(1):11-29
pubmed: 11158526
Biotechnol Biofuels. 2017 Mar 21;10:55
pubmed: 28344645
Bioresour Technol. 2015 Sep;191:173-86
pubmed: 25989093
Biotechnol Rep (Amst). 2014 Sep 04;4:94-98
pubmed: 28435802
Biotechnol Adv. 2005 Nov;23(7-8):471-99
pubmed: 15919172
Curr Opin Plant Biol. 2016 Jun;31:66-75
pubmed: 27060669
Environ Microbiol. 2007 Aug;9(8):2007-24
pubmed: 17635546
Sheng Wu Gong Cheng Xue Bao. 2015 Apr;31(4):534-41
pubmed: 26380410