Contribution of Crystal Lattice Energy on the Dissolution Behavior of Eutectic Solid Dispersions.
Journal
ACS omega
ISSN: 2470-1343
Titre abrégé: ACS Omega
Pays: United States
ID NLM: 101691658
Informations de publication
Date de publication:
05 May 2020
05 May 2020
Historique:
received:
14
11
2019
accepted:
07
04
2020
entrez:
12
5
2020
pubmed:
12
5
2020
medline:
12
5
2020
Statut:
epublish
Résumé
In the literature, it is reported that eutectics lead to the enhanced dissolution of a poorly soluble compound. However, the solubility theory suggests that since crystal structures of two components are unchanged that all else being equal, the dissolution rates of a fused mixture (FM) should be the same as a physical mixture (PM). The influence of crystal lattice energy on dissolution profiles was investigated using the PM and FM. Experimental phase diagrams constructed using differential scanning calorimetry data were compared with those theoretically derived. Deviation of the experimental phase diagram curves from the theoretical model indicates the nonideal behavior of both systems (ibuprofen/poly(ethylene glycol)-6000 and acetaminophen/caffeine). Both the binary systems showed an increase in the dissolution rate of the PM and FM. However, the dissolution from the PM was comparable with the FM's dissolution profile. The theoretical solubility calculations using the modified solubility equation showed that the use of the eutectic temperature instead of the drug's melting point should give a 3-4-fold increase in drug solubility. However, the correlation between dissolution and solubility calculation showed that the FM did not improve the dissolution when compared with the respective PM's dissolution profile. The proposed explanation is that the unchanged crystal lattice energy in eutectics still limits the solubility and therefore the dissolution rate.
Identifiants
pubmed: 32391455
doi: 10.1021/acsomega.9b03886
pmc: PMC7203706
doi:
Types de publication
Journal Article
Langues
eng
Pagination
9690-9701Informations de copyright
Copyright © 2020 American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Pharmaceutics. 2019 Mar 09;11(3):
pubmed: 30857331
J Pharm Sci. 1971 Sep;60(9):1281-302
pubmed: 4935981
Chem Commun (Camb). 2014 Jan 28;50(8):906-23
pubmed: 24322207
Drug Dev Ind Pharm. 2008 Oct;34(10):1013-21
pubmed: 18686087
J Pharm Sci. 2010 Mar;99(3):1254-64
pubmed: 19697391
J Pharm Sci. 1999 Oct;88(10):1058-66
pubmed: 10514356
Mol Pharm. 2018 May 7;15(5):1917-1927
pubmed: 29620908
Int J Pharm. 2019 Mar 25;559:348-359
pubmed: 30721724
Biol Pharm Bull. 2008 May;31(5):939-45
pubmed: 18451523
ISRN Pharm. 2012;2012:195727
pubmed: 22830056
J Pharm Sci. 2007 Feb;96(2):294-304
pubmed: 17051588
J Pharm Pharmacol. 2009 Jan;61(1):23-30
pubmed: 19126293
Eur J Pharm Biopharm. 2008 May;69(1):364-71
pubmed: 18036792
J Pharm Sci. 2009 Sep;98(9):2935-53
pubmed: 19499564
Drug Deliv. 2008 Aug;15(6):355-64
pubmed: 18686079
Eur J Pharm Biopharm. 2004 Sep;58(2):265-78
pubmed: 15296954
Pharm Res. 2000 Apr;17(4):397-404
pubmed: 10870982
J Pharm Sci. 2008 Apr;97(4):1329-49
pubmed: 17722100
Pharm Res. 2002 Mar;19(3):315-21
pubmed: 11934239
Int J Pharm. 2004 Sep 10;282(1-2):151-62
pubmed: 15336390
Chem Pharm Bull (Tokyo). 2008 Apr;56(4):569-74
pubmed: 18379109
J Pharm Sci. 1998 May;87(5):543-51
pubmed: 9572902
J Pharm Sci. 2003 Mar;92(3):505-15
pubmed: 12587112
Eur J Pharm Sci. 2001 Feb;12(4):395-404
pubmed: 11231106