Pd(II)-Catalyzed Tandem Enantioselective Methylene C(sp
C−H activation
aza-Wacker cyclization
cascade reaction
enantioselectivity
palladium
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
10 08 2020
10 08 2020
Historique:
received:
27
03
2020
revised:
24
04
2020
pubmed:
12
5
2020
medline:
12
5
2020
entrez:
12
5
2020
Statut:
ppublish
Résumé
Herein, we describe an unprecedented cascade reaction to β-stereogenic γ-lactams involving Pd(II)-catalyzed enantioselective aliphatic methylene C(sp
Identifiants
pubmed: 32391972
doi: 10.1002/anie.202004504
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
14060-14064Informations de copyright
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
F. Rivas, T. Ling, Org. Prep. Proced. Int. 2016, 48, 254;
J. Caruano, G. G. Muccioli, R. Robiette, Org. Biomol. Chem. 2016, 14, 10134;
M. Negwer, H.-G. Scharnow, Organic-Chemical Drugs and their Synonyms, 8th ed., Wiley-VCH, Weinheim, 2001;
D.-N. Zhou, C.-X. Wang, M.-L. Li, Z. Long, J.-B. Lan, Chin. Chem. Lett. 2018, 29, 191.
For selected examples, see:
Y.-J. Xie, Y.-W. Zhao, B. Qian, L. Yang, C.-G. Xia, H.-M. Huang, Angew. Chem. Int. Ed. 2011, 50, 5682;
Angew. Chem. 2011, 123, 5800;
X. Zhao, D. A. DiRocco, T. Rovis, J. Am. Chem. Soc. 2011, 133, 12466;
C. Shao, H.-J. Yu, N.-Y. Wu, P. Tian, R. Wang, C.-G. Feng, G.-Q. Lin, Org. Lett. 2011, 13, 788;
Q. Yuan, D. Liu, W. Zhang, Org. Lett. 2017, 19, 1144;
Q. Lang, G. Gu, Y. Cheng, Q. Yin, X. Zhang, ACS Catal. 2018, 8, 4824.
For selected reviews on asymmetric C−H functionalization, see:
J. Loup, U. Dhawa, F. Pesciaioli, J. Wencel-Delord, L. Ackermann, Angew. Chem. Int. Ed. 2019, 58, 12803;
Angew. Chem. 2019, 131, 12934;
G. Liao, T. Zhou, Q.-J. Yao, B.-F. Shi, Chem. Commun. 2019, 55, 8514;
T. G. Saint-Denis, R.-Y. Zhu, G. Chen, Q.-F. Wu, J.-Q. Yu, Science 2018, 359, eaao4798;
C. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem. Rev. 2017, 117, 8908;
C. Zheng, S.-L. You, RSC Adv. 2014, 4, 6173.
P. M. P. Gois, C. A. M. Afonso, Eur. J. Org. Chem. 2004, 3773.
Y. Park, S. Chang, Nat. Catal. 2019, 2, 219;
Q. Xing, C.-M. Chan, Y.-W. Yeung, W.-Y. Yu, J. Am. Chem. Soc. 2019, 141, 3849;
H. Wang, Y. Park, Z. Bai, S. Chang, G. He, G. Chen, J. Am. Chem. Soc. 2019, 141, 7194;
Z. Zhou, S. Chen, Y. Hong, E. Winterling, Y. Tan, M. Hemming, K. Harms, K. N. Houk, E. Meggers, J. Am. Chem. Soc. 2019, 141, 19048.
J. Pedroni, N. Cramer, Angew. Chem. Int. Ed. 2015, 54, 11826;
Angew. Chem. 2015, 127, 11992;
P. A. Donets, N. Cramer, J. Am. Chem. Soc. 2013, 135, 11772.
For selected reviews and recent examples, see:
R. I. McDonald, G. Liu, S. S. Stahl, Chem. Rev. 2011, 111, 2981;
J.-E. Bäckvall, P. Kočovský, Chem. Eur. J. 2015, 21, 36;
G. Liu, S. S. Stahl, J. Am. Chem. Soc. 2006, 128, 7179;
G. Liu, S. S. Stahl, J. Am. Chem. Soc. 2007, 129, 6328;
X. Kou, Q. Shao, C. Ye, G. Yang, W. Zhang, J. Am. Chem. Soc. 2018, 140, 7587;
G.-Q. Yang, C.-R. Shen, W.-B. Zhang, Angew. Chem. Int. Ed. 2012, 51, 9141;
Angew. Chem. 2012, 124, 9275;
K.-T. Yip, M. Yang, K.-L. Law, N.-Y. Zhu, D. Yang, J. Am. Chem. Soc. 2006, 128, 3130;
A. Sen, K. Takenaka, H. Sasai, Org. Lett. 2018, 20, 6827;
G.-Q. Yang, W.-B. Zhang, Org. Lett. 2012, 14, 268;
Y.-P. He, H. Wu, L. Xu, Y.-L. Su, L.-Z. Gong, Org. Chem. Front. 2014, 1, 473.
L. McMurray, F. O'Hara, M. J. Gaunt, Chem. Soc. Rev. 2011, 40, 1976;
D. J. Abrams, P. A. Provencher, E. J. Sorensen, Chem. Soc. Rev. 2018, 47, 8925.
For selected examples, see:
M. Nakanishi, D. Katayey, C. Besnard, E. P. Kündig, Angew. Chem. Int. Ed. 2011, 50, 7438;
Angew. Chem. 2011, 123, 7576;
T. Saget, N. Cramer, Angew. Chem. Int. Ed. 2012, 51, 12842;
Angew. Chem. 2012, 124, 13014;
P. M. Holstein, M. Vogler, P. Larini, G. Pilet, E. Clot, O. Baudoin, ACS Catal. 2015, 5, 4300;
M. Wasa, K. M. Engle, D. W. Lin, E. J. Yoo, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 19598.
P. Jain, P. Verma, G. Xia, J.-Q. Yu, Nat. Chem. 2017, 9, 140;
H.-J. Jiang, X.-M. Zhong, J. Yu, Y. Zhang, X. Zhang, Y.-D. Wu, L.-Z. Gong, Angew. Chem. Int. Ed. 2019, 58, 1803;
Angew. Chem. 2019, 131, 1817;
S.-B. Yan, S. Zhang, W.-L. Duan, Org. Lett. 2015, 17, 2458;
F.-L. Zhang, K. Hong, T.-J. Li, H. Park, J.-Q. Yu, Science 2016, 351, 252;
H. Wang, H.-R. Tong, G. He, G. Chen, Angew. Chem. Int. Ed. 2016, 55, 15387;
Angew. Chem. 2016, 128, 15613;
H.-R. Tong, S. Zheng, X. Li, Z. Deng, H. Wang, G. He, G. Chen, ACS Catal. 2018, 8, 11502.
G. Chen, W. Gong, Z. Zhuang, M. S. Andrä, Y.-Q. Chen, X. Hong, Y.-F. Yang, T. Liu, K. N. Houk, J.-Q. Yu, Science 2016, 353, 1023.
S.-Y. Yan, Y.-Q. Han, Q.-J. Yao, X.-L. Nie, L. Liu, B.-F. Shi, Angew. Chem. Int. Ed. 2018, 57, 9093;
Angew. Chem. 2018, 130, 9231;
Y.-Q. Han, Y. Ding, T. Zhou, S.-Y. Yan, H. Song, B.-F. Shi, J. Am. Chem. Soc. 2019, 141, 4558;
T. Zhou, M. X. Jiang, X. Yang, Q. Yue, Y.-Q. Han, Y. Ding, B.-F. Shi, Chin. J. Chem. 2020, 38, 242.
V. G. Zaitsev, D. Shabashov, O. Daugulis, J. Am. Chem. Soc. 2005, 127, 13154;
O. Daugulis, J. Roane, L. D. Tran, Acc. Chem. Res. 2015, 48, 1053;
G. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 2013, 52, 11726;
Angew. Chem. 2013, 125, 11942.
B. Wang, C. Lu, S. Zhang, G. He, W. A. Nack, G. Chen, Org. Lett. 2014, 16, 6260.
Q. Zhang, K. Chen, W. Rao, Y. Zhang, F.-J. Chen, B.-F. Shi, Angew. Chem. Int. Ed. 2013, 52, 13588;
Angew. Chem. 2013, 125, 13833;
F.-J. Chen, S. Zhao, F. Hu, K. Chen, Q. Zhang, S.-Q. Zhang, B.-F. Shi, Chem. Sci. 2013, 4, 4187;
Q. Zhang, B.-F. Shi, Chin. J. Chem. 2019, 37, 647.
Y. Zhang, N. Li, B. Qu, S. Ma, H. Lee, N. C. Gonnella, J. Gao, W. Li, Z. Tan, J. T. Reeves, J. Wang, J. C. Lorenz, G. Li, D. C. Reeves, A. Premasiri, N. Grinberg, N. Haddad, B. Z. Lu, J. J. Song, C. H. Senanayake, Org. Lett. 2013, 15, 1710;
L. Wang, D. Yang, D. Li, R. Wang, Org. Lett. 2015, 17, 3004;
Y. Zhang, J.-P. Wu, G. Li, K. R. Fandrick, J. Gao, Z. Tan, J. Johnson, W. Li, S. Sanyal, J. Wang, X. Sun, J. C. Lorenz, S. Rodriguez, J. T. Reeves, N. Grinberg, H. Lee, N. Yee, B. Z. Lu, C. H. Senanayake, J. Org. Chem. 2016, 81, 2665.
We hypothesized that the pre-stirring would enable the formation of the active chiral catalyst. However, we were unable to isolate and characterize the active catalyst at this stage.
CCDC 1961066 (3 h) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
syn-Aminopalladation is favored as a result of the coordination of the amide (an intramolecular nucleophile) to palladium.
An alternative reaction pathway involving enantioselective C−H alkynylation-cyclization was ruled out and a putative catalytic cycle was proposed, see the Supporting Information for details. J. Zhang, H. Chen, C. Lin, Z. Liu, C. Wang, Y. Zhang, J. Am. Chem. Soc. 2015, 137, 12990.
D. Dailler, G. Danoun, O. Baudoin, Angew. Chem. Int. Ed. 2015, 54, 4919;
Angew. Chem. 2015, 127, 5001.