Genetic regulatory subnetworks and key regulating genes in rat hippocampus perturbed by prenatal malnutrition: implications for major brain disorders.
Animals
Animals, Newborn
Brain Diseases
Cognition
Female
Gene Expression Regulation
Hippocampus
/ metabolism
Male
Prefrontal Cortex
/ metabolism
Pregnancy
Prenatal Exposure Delayed Effects
Prenatal Nutritional Physiological Phenomena
Pyramidal Cells
/ metabolism
Rats
Rats, Sprague-Dawley
Starvation
/ physiopathology
famine
malnutrition
prenatal
rat
transcriptome
Journal
Aging
ISSN: 1945-4589
Titre abrégé: Aging (Albany NY)
Pays: United States
ID NLM: 101508617
Informations de publication
Date de publication:
11 05 2020
11 05 2020
Historique:
received:
05
10
2019
accepted:
16
04
2020
pubmed:
12
5
2020
medline:
27
2
2021
entrez:
12
5
2020
Statut:
ppublish
Résumé
Many population studies have shown that maternal prenatal nutrition deficiency may increase the risk of neurodevelopmental disorders in their offspring, but its potential transcriptomic effects on brain development are not clear. We aimed to investigate the transcriptional regulatory interactions between genes in particular pathways responding to the prenatal nutritional deficiency and to explore their effects on neurodevelopment and related disorders. We identified three modules in rat hippocampus responding to maternal prenatal nutritional deficiency and found 15 key genes ( These findings demonstrated that these genes with the three modules in rat hippocampus involved in synaptic development, neuronal projection, cognitive function, and learning function are significantly enriched hippocampal CA1 pyramidal neurons and suggest that three genetic regulatory subnetworks and thirteen key regulating genes in rat hippocampus perturbed by a prenatal nutrition deficiency. These genes and related subnetworks may be prenatally involved in the etiologies of major brain disorders, including Alzheimer's disease, autism, and schizophrenia. We compared the transcriptomic differences in the hippocampus and prefrontal cortex between 10 rats with prenatal nutritional deficiency and 10 rats with prenatal normal chow feeding by differential analysis and co-expression network analysis. A network-driven integrative analysis with microRNAs and transcription factors was performed to define significant modules and hub genes responding to prenatal nutritional deficiency. Meanwhile, the module preservation test was conducted between the hippocampus and prefrontal cortex. Expression levels of the hub genes were further validated with a quantitative real-time polymerase chain reaction based on additional 40 pairs of rats.
Identifiants
pubmed: 32392183
doi: 10.18632/aging.103150
pii: 103150
pmc: PMC7244046
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8434-8458Références
OMICS. 2012 May;16(5):284-7
pubmed: 22455463
Int J Dev Neurosci. 2012 Feb;30(1):39-45
pubmed: 22023958
Nutr Neurosci. 2011 Jul;14(4):165-78
pubmed: 21902887
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W133-9
pubmed: 18487623
J Nutr. 1991 May;121(5):762-9
pubmed: 2019885
Am J Epidemiol. 1998 Feb 1;147(3):213-6
pubmed: 9482494
Mol Psychiatry. 2019 Jan;24(1):88-107
pubmed: 29934544
Brain Imaging Behav. 2018 Apr;12(2):509-517
pubmed: 28405888
Mol Med Rep. 2017 May;15(5):2829-2836
pubmed: 28260111
Schizophr Res. 2008 Feb;99(1-3):48-55
pubmed: 18065207
Invest Ophthalmol Vis Sci. 2017 Jan 1;58(1):660-669
pubmed: 28135361
J Clin Invest. 2017 Mar 1;127(3):1005-1018
pubmed: 28192369
Am J Med Genet B Neuropsychiatr Genet. 2006 Dec 5;141B(8):947-56
pubmed: 16917939
Nat Rev Genet. 2010 Jun;11(6):446-50
pubmed: 20479774
Nat Protoc. 2009;4(8):1184-91
pubmed: 19617889
Elife. 2017 Mar 23;6:
pubmed: 28440221
BMC Syst Biol. 2014;8 Suppl 4:S11
pubmed: 25521941
J Neurosci. 2014 Sep 3;34(36):11929-47
pubmed: 25186741
Biol Psychiatry. 2013 Feb 15;73(4):313-20
pubmed: 23062885
J Biol Chem. 2011 Dec 9;286(49):42051-62
pubmed: 22009741
Psychiatry Res. 2013 Jun 30;208(1):84-7
pubmed: 23414653
Front Neurosci. 2019 May 02;13:383
pubmed: 31133774
Physiol Behav. 1990 Jul;48(1):73-7
pubmed: 2122484
Nucleic Acids Res. 2015 Jan;43(Database issue):D146-52
pubmed: 25378301
Int J Neuropsychopharmacol. 2014 Oct 31;18(4):
pubmed: 25522397
Arch Toxicol. 2009 Aug;83(8):747-62
pubmed: 19212759
BMC Bioinformatics. 2014 Aug 29;15:293
pubmed: 25176396
Cell Cycle. 2015;14(21):3461-74
pubmed: 26566865
Neural Plast. 2008;2008:646919
pubmed: 18604298
Schizophr Bull. 2009 May;35(3):568-76
pubmed: 19155344
Schizophr Bull. 2008 Nov;34(6):1054-63
pubmed: 18682377
J Proteome Res. 2008 May;7(5):2151-7
pubmed: 18348512
Acta Neuropathol. 2019 Jun;137(6):879-899
pubmed: 30739198
Nat Neurosci. 2016 Nov;19(11):1463-1476
pubmed: 27571009
Schizophr Res. 2018 Sep;199:176-180
pubmed: 29499969
Am J Med Genet B Neuropsychiatr Genet. 2011 Dec;156B(8):949-59
pubmed: 21990008
Eur J Neurosci. 2019 Sep;50(6):3072-3084
pubmed: 31087437
Science. 2018 Feb 9;359(6376):693-697
pubmed: 29439242
Algorithms Mol Biol. 2015 Jul 08;10:23
pubmed: 26157474
Nature. 2011 May 25;474(7351):380-4
pubmed: 21614001
Am J Hum Genet. 2018 Jan 4;102(1):44-57
pubmed: 29276004
JAMA Neurol. 2018 Jul 1;75(7):860-875
pubmed: 29630712
Psychopharmacology (Berl). 2004 Jun;174(1):151-62
pubmed: 15205886
Br Med J (Clin Res Ed). 1981 May 9;282(6275):1509-11
pubmed: 6786536
Hippocampus. 2018 Jan;28(1):18-30
pubmed: 28843045
Pediatrics. 2017 Apr;139(Suppl 1):S12-S22
pubmed: 28562245
BMC Bioinformatics. 2008 Dec 29;9:559
pubmed: 19114008
Dev Neurosci. 2014;36(6):532-41
pubmed: 25342495
Front Oncol. 2019 Oct 11;9:1030
pubmed: 31681575
Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368
pubmed: 27924014
Stat Appl Genet Mol Biol. 2004;3:Article3
pubmed: 16646809