Neuroendocrine Tumor Omic Gene Cluster Analysis Amplifies the Prognostic Accuracy of the NETest.


Journal

Neuroendocrinology
ISSN: 1423-0194
Titre abrégé: Neuroendocrinology
Pays: Switzerland
ID NLM: 0035665

Informations de publication

Date de publication:
2021
Historique:
received: 04 02 2020
accepted: 11 05 2020
pubmed: 12 5 2020
medline: 18 11 2021
entrez: 12 5 2020
Statut: ppublish

Résumé

The NETest is a multigene assay comprising 51 circulating neuroendocrine tumor (NET)-specific transcripts. The quotient of the 51-gene assay is based upon an ensemble of machine learning algorithms. Eight cancer hallmarks or "omes" (apoptome, epigenome, growth factor signalome, metabolome, proliferome, plurome, secretome, SSTRome) represent 29 genes. The NETest is an accurate diagnostic (>90%) test, but its prognostic utility has not been assessed. In this study, we describe the expansion of the NETest omic cluster components and demonstrate that integration amplifies NETest prognostic accuracy. Group 1: n = 222; including stable disease (SD, n = 146), progressive disease (PD, n = 76), and controls (n = 139). Group 2: NET Registry NCT02270567; n = 88; prospective samples (SD, n = 54; PD, n = 34) with up to 24 months follow-up. We used PubMed literature review, interactomic analysis, nonparametric testing, Kaplan-Meier survival curves, and χ2 analyses to inform and define the prognostic significance of NET genomic "hallmarks." 2020 analyses: In-depth analyses of 47 -NETest genes identified a further six omes: fibrosome, inflammasome, metastasome, NEDome, neurome, and TFome. Group 1 analysis: Twelve omes, excluding the inflammasome and apoptome, were significantly (p < 0.05, 2.1- to 8.2-fold) elevated compared to controls. In the PD group, seven omes (proliferome, NEDome, epigenome, SSTRome, neurome, metastasome, and fibrosome) were elevated (both expression levels and fold change >2) versus SD. Group 2 analysis: All these seven omes were upregulated. In PD, they were significantly more elevated (p < 0.02) than in SD. The septet omic expression exhibited a 69% prognostic accuracy. The NETest alone was 70.5% accurate. A low NETest (≤40) integrated with epigenome/metastasome levels was an accurate prognostic for PD (90%). A high NETest (>40) including the fibrosome/NEDome predicted PD development within 3 months (100%). Using decision tree analysis to integrate the four omes (epigenome, metastasome, fibrosome, and NEDome) with the NETest score generated an overall prognostic accuracy of 93%. Examination of NETest omic gene cluster analysis identified five additional clinically relevant cancer hallmarks. Identification of seven omic clusters (septet) provides a molecular pathological signature of disease progression. The integration of the quartet (epigenome, fibrosome, metastasome, NEDome) and the NETest score yielded a 93% accuracy in the prediction of future disease status.

Sections du résumé

BACKGROUND
The NETest is a multigene assay comprising 51 circulating neuroendocrine tumor (NET)-specific transcripts. The quotient of the 51-gene assay is based upon an ensemble of machine learning algorithms. Eight cancer hallmarks or "omes" (apoptome, epigenome, growth factor signalome, metabolome, proliferome, plurome, secretome, SSTRome) represent 29 genes. The NETest is an accurate diagnostic (>90%) test, but its prognostic utility has not been assessed. In this study, we describe the expansion of the NETest omic cluster components and demonstrate that integration amplifies NETest prognostic accuracy.
METHODS
Group 1: n = 222; including stable disease (SD, n = 146), progressive disease (PD, n = 76), and controls (n = 139). Group 2: NET Registry NCT02270567; n = 88; prospective samples (SD, n = 54; PD, n = 34) with up to 24 months follow-up. We used PubMed literature review, interactomic analysis, nonparametric testing, Kaplan-Meier survival curves, and χ2 analyses to inform and define the prognostic significance of NET genomic "hallmarks."
RESULTS
2020 analyses: In-depth analyses of 47 -NETest genes identified a further six omes: fibrosome, inflammasome, metastasome, NEDome, neurome, and TFome. Group 1 analysis: Twelve omes, excluding the inflammasome and apoptome, were significantly (p < 0.05, 2.1- to 8.2-fold) elevated compared to controls. In the PD group, seven omes (proliferome, NEDome, epigenome, SSTRome, neurome, metastasome, and fibrosome) were elevated (both expression levels and fold change >2) versus SD. Group 2 analysis: All these seven omes were upregulated. In PD, they were significantly more elevated (p < 0.02) than in SD. The septet omic expression exhibited a 69% prognostic accuracy. The NETest alone was 70.5% accurate. A low NETest (≤40) integrated with epigenome/metastasome levels was an accurate prognostic for PD (90%). A high NETest (>40) including the fibrosome/NEDome predicted PD development within 3 months (100%). Using decision tree analysis to integrate the four omes (epigenome, metastasome, fibrosome, and NEDome) with the NETest score generated an overall prognostic accuracy of 93%.
CONCLUSIONS
Examination of NETest omic gene cluster analysis identified five additional clinically relevant cancer hallmarks. Identification of seven omic clusters (septet) provides a molecular pathological signature of disease progression. The integration of the quartet (epigenome, fibrosome, metastasome, NEDome) and the NETest score yielded a 93% accuracy in the prediction of future disease status.

Identifiants

pubmed: 32392558
pii: 000508573
doi: 10.1159/000508573
doi:

Substances chimiques

Biomarkers, Tumor 0

Banques de données

ClinicalTrials.gov
['NCT02270567']

Types de publication

Clinical Trial Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

490-504

Informations de copyright

© 2020 S. Karger AG, Basel.

Auteurs

Mark Kidd (M)

Wren Laboratories, Branford, Connecticut, USA.

Alexandra Kitz (A)

Wren Laboratories, Branford, Connecticut, USA.

Ignat Drozdov (I)

Bering Limited, London, United Kingdom.

Irvin Modlin (I)

Yale University School of Medicine, New Haven, Connecticut, USA, imodlin@irvinmodlin.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH