Machine learning in GI endoscopy: practical guidance in how to interpret a novel field.
computerised image analysis
endoscopy
gastrointesinal endoscopy
Journal
Gut
ISSN: 1468-3288
Titre abrégé: Gut
Pays: England
ID NLM: 2985108R
Informations de publication
Date de publication:
11 2020
11 2020
Historique:
received:
12
12
2019
revised:
13
04
2020
accepted:
22
04
2020
pubmed:
13
5
2020
medline:
17
4
2021
entrez:
13
5
2020
Statut:
ppublish
Résumé
There has been a vast increase in GI literature focused on the use of machine learning in endoscopy. The relative novelty of this field poses a challenge for reviewers and readers of GI journals. To appreciate scientific quality and novelty of machine learning studies, understanding of the technical basis and commonly used techniques is required. Clinicians often lack this technical background, while machine learning experts may be unfamiliar with clinical relevance and implications for daily practice. Therefore, there is an increasing need for a multidisciplinary, international evaluation on how to perform high-quality machine learning research in endoscopy. This review aims to provide guidance for readers and reviewers of peer-reviewed GI journals to allow critical appraisal of the most relevant quality requirements of machine learning studies. The paper provides an overview of common trends and their potential pitfalls and proposes comprehensive quality requirements in six overarching themes: terminology, data, algorithm description, experimental setup, interpretation of results and machine learning in clinical practice.
Identifiants
pubmed: 32393540
pii: gutjnl-2019-320466
doi: 10.1136/gutjnl-2019-320466
pmc: PMC7569393
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
2035-2045Commentaires et corrections
Type : CommentIn
Informations de copyright
© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY. Published by BMJ.
Déclaration de conflit d'intérêts
Competing interests: None declared.
Références
Gastroenterology. 2016 Jun;150(7):1531-1532.e3
pubmed: 27072671
Radiology. 2017 Aug;284(2):574-582
pubmed: 28436741
JAMA. 2017 Dec 12;318(22):2199-2210
pubmed: 29234806
Sci Rep. 2017 Apr 19;7:46479
pubmed: 28422152
Gastroenterology. 2018 May;154(7):1876-1886
pubmed: 29462601
Sci Rep. 2017 Jul 11;7(1):5110
pubmed: 28698556
Gastrointest Endosc. 2019 Jan;89(1):25-32
pubmed: 30120958
IEEE Trans Med Imaging. 2004 Jul;23(7):903-21
pubmed: 15250643
Nat Commun. 2018 Dec 6;9(1):5217
pubmed: 30523263
Endoscopy. 2016 Jul;48(7):617-24
pubmed: 27100718
Endoscopy. 2019 Mar;51(3):221-226
pubmed: 30722072
Endoscopy. 2019 Jun;51(6):511-512
pubmed: 31137074
Gastroenterology. 2018 Feb;154(3):568-575
pubmed: 29042219
BMJ. 2010 Mar 23;340:c332
pubmed: 20332509
Gastrointest Endosc. 2011 Dec;74(6):1354-9
pubmed: 22000791
Lancet. 2019 Apr 20;393(10181):1577-1579
pubmed: 31007185
Med Image Anal. 2017 Jan;35:303-312
pubmed: 27497072
Lancet Gastroenterol Hepatol. 2019 Jan;4(1):71-80
pubmed: 30527583
United European Gastroenterol J. 2019 May;7(4):538-547
pubmed: 31065371
Ann Intern Med. 2018 Sep 18;169(6):357-366
pubmed: 30105375
Gastrointest Endosc. 2014 Nov;80(5):877-83
pubmed: 25088924
Gastrointest Endosc. 2019 Jul;90(1):55-63
pubmed: 30926431
Gastroenterology. 2018 Oct;155(4):1069-1078.e8
pubmed: 29928897
Gastroenterology. 2019 Apr;156(5):1299-1308.e3
pubmed: 30610858
Gastrointest Endosc. 2020 Feb;91(2):428-435.e2
pubmed: 31783029
Gastrointest Endosc. 2016 Mar;83(3):643-9
pubmed: 26264431
Gastrointest Endosc. 2019 Feb;89(2):408-415
pubmed: 30268542
Gut. 2019 Jan;68(1):94-100
pubmed: 29066576