Interplay between primary familial brain calcification-associated SLC20A2 and XPR1 phosphate transporters requires inositol polyphosphates for control of cellular phosphate homeostasis.
Adenosine Triphosphate
/ genetics
Cell Line
Homeostasis
Humans
Inositol Phosphates
/ genetics
Phosphotransferases (Phosphate Group Acceptor)
/ genetics
Receptors, G-Protein-Coupled
/ genetics
Receptors, Virus
/ genetics
Sodium-Phosphate Cotransporter Proteins, Type III
/ genetics
Xenotropic and Polytropic Retrovirus Receptor
ATP
SPX domain
anion transport
cell metabolism
efflux transporter
energy metabolism
inositol phosphate
inositol pyrophosphate
metabolic regulation
phosphate homeostasis
phosphate transporter
primary familial brain calcification (PFBC)
solute carrier family 20 member 2 (SLC20A2)
xenotropic and polytropic retrovirus receptor 1 (XPR1)
Journal
The Journal of biological chemistry
ISSN: 1083-351X
Titre abrégé: J Biol Chem
Pays: United States
ID NLM: 2985121R
Informations de publication
Date de publication:
10 07 2020
10 07 2020
Historique:
received:
08
10
2019
revised:
09
05
2020
pubmed:
13
5
2020
medline:
14
1
2021
entrez:
13
5
2020
Statut:
ppublish
Résumé
Solute carrier family 20 member 2 (SLC20A2) and xenotropic and polytropic retrovirus receptor 1 (XPR1) are transporters with phosphate uptake and efflux functions, respectively. Both are associated with primary familial brain calcification (PFBC), a genetic disease characterized by cerebral calcium-phosphate deposition and associated with neuropsychiatric symptoms. The association of the two transporters with the same disease suggests that they jointly regulate phosphate fluxes and cellular homeostasis, but direct evidence is missing. Here, we found that cross-talk between SLC20A2 and XPR1 regulates phosphate homeostasis, and we identified XPR1 as a key inositol polyphosphate (IP)-dependent regulator of this process. We found that overexpression of WT SLC20A2 increased phosphate uptake, as expected, but also unexpectedly increased phosphate efflux, whereas PFBC-associated SLC20A2 variants did not. Conversely, SLC20A2 depletion decreased phosphate uptake only slightly, most likely compensated for by the related SLC20A1 transporter, but strongly decreased XPR1-mediated phosphate efflux. The SLC20A2-XPR1 axis maintained constant intracellular phosphate and ATP levels, which both increased in XPR1 KO cells. Elevated ATP levels are a hallmark of altered inositol pyrophosphate (PP-IP) synthesis, and basal ATP levels were restored after phosphate efflux rescue with WT XPR1 but not with XPR1 harboring a mutated PP-IP-binding pocket. Accordingly, inositol hexakisphosphate kinase 1-2 (
Identifiants
pubmed: 32393577
pii: S0021-9258(17)48959-9
doi: 10.1074/jbc.RA119.011376
pmc: PMC7363132
doi:
Substances chimiques
Inositol Phosphates
0
Receptors, G-Protein-Coupled
0
Receptors, Virus
0
SLC20A2 protein, human
0
Sodium-Phosphate Cotransporter Proteins, Type III
0
XPR1 protein, human
0
Xenotropic and Polytropic Retrovirus Receptor
0
Adenosine Triphosphate
8L70Q75FXE
Phosphotransferases (Phosphate Group Acceptor)
EC 2.7.4.-
IP6K1 protein, human
EC 2.7.4.21
inositol hexakisphosphate kinase
EC 2.7.4.21
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9366-9378Subventions
Organisme : Medical Research Council
ID : MC_UU_00012/4
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T028904/1
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : P01 DK032094
Pays : United States
Informations de copyright
© 2020 López-Sánchez et al.
Déclaration de conflit d'intérêts
Conflict of interest—J.-L. B. and M. S. are inventors on patents describing the use of RBD ligands; M. S. is the co-founder of METAFORA-biosystems, a start-up company that focuses on metabolite transporters under physiological and pathological conditions.
Références
Science. 2011 Nov 11;334(6057):802-5
pubmed: 22076377
Nat Genet. 1999 Feb;21(2):216-9
pubmed: 9988277
Neurochem Res. 2015 Dec;40(12):2583-99
pubmed: 25947369
Kidney Int. 1996 Apr;49(4):959-63
pubmed: 8691744
Am J Med Genet B Neuropsychiatr Genet. 2015 Oct;168(7):586-94
pubmed: 26129893
Pflugers Arch. 2004 Feb;447(5):647-52
pubmed: 12759754
Nat Genet. 2012 Feb 12;44(3):254-6
pubmed: 22327515
Cell Mol Life Sci. 2011 Jan;68(2):205-18
pubmed: 20848155
Cardiovasc Res. 2018 Mar 15;114(4):590-600
pubmed: 29514202
Trends Biochem Sci. 2017 Mar;42(3):219-231
pubmed: 27876550
Neurology. 2013 Jan 8;80(2):181-7
pubmed: 23255827
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3568-3574
pubmed: 32019887
Nat Genet. 2013 Sep;45(9):1077-82
pubmed: 23913003
J Biol Chem. 2018 Feb 9;293(6):2102-2114
pubmed: 29233890
Cell Rep. 2013 Jun 27;3(6):1866-73
pubmed: 23791524
J Neurol Sci. 2018 May 15;388:150-154
pubmed: 29627011
J Bone Miner Res. 2019 Jun;34(6):1101-1114
pubmed: 30721528
J Bone Miner Metab. 2010 Mar;28(2):139-48
pubmed: 19795094
Am J Physiol Renal Physiol. 2014 Jun 1;306(11):F1275-84
pubmed: 24740787
Pflugers Arch. 2009 Oct;458(6):1151-61
pubmed: 19506901
Cell Mol Life Sci. 2006 Mar;63(5):552-64
pubmed: 16429326
J Am Soc Nephrol. 2013 Feb;24(3):353-63
pubmed: 23291474
Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1385-90
pubmed: 9990033
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):11968-11973
pubmed: 29078269
Science. 2016 May 20;352(6288):986-90
pubmed: 27080106
Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7071-5
pubmed: 8041748
Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):78-82
pubmed: 8278411
Sci Rep. 2017 Mar 27;7:45214
pubmed: 28345672
J Am Soc Nephrol. 2004 Nov;15(11):2857-67
pubmed: 15504939
Brain. 2013 Nov;136(Pt 11):3395-407
pubmed: 24065723
Cell. 2003 Nov 14;115(4):449-59
pubmed: 14622599
J Biol Chem. 2019 Jul 26;294(30):11597-11608
pubmed: 31186349
Arterioscler Thromb Vasc Biol. 2013 Nov;33(11):2625-32
pubmed: 23968976
N Engl J Med. 2010 Jun 24;362(25):2399-409
pubmed: 20573928
Curr Opin Biotechnol. 2018 Feb;49:156-162
pubmed: 28889038
Nat Genet. 2015 Jun;47(6):579-81
pubmed: 25938945
Acta Neuropathol. 2005 Jun;109(6):643-53
pubmed: 15937691
Biotechniques. 1989 Oct;7(9):980-2, 984-6, 989-90
pubmed: 2631796
J Biol Chem. 2017 Mar 17;292(11):4544-4555
pubmed: 28126903
J Mol Neurosci. 2017 Feb;61(2):215-220
pubmed: 27943094
Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):927-32
pubmed: 9927670
Eur J Hum Genet. 2018 Oct;26(10):1462-1477
pubmed: 29955172
J Neurol. 2016 Aug;263(8):1559-64
pubmed: 27230854
Sci Rep. 2019 May 1;9(1):6776
pubmed: 31043717
Mol Plant. 2019 Nov 4;12(11):1463-1473
pubmed: 31419530
Circ Res. 2006 Apr 14;98(7):905-12
pubmed: 16527991
Neurogenetics. 2016 Apr;17(2):125-30
pubmed: 26660102
Genomics. 1999 Dec 1;62(2):281-4
pubmed: 10610722
Neuron. 2018 Jun 27;98(6):1116-1123.e5
pubmed: 29910000
J Virol. 2005 May;79(10):6560-4
pubmed: 15858043
Brain. 2019 Jun 1;142(6):1573-1586
pubmed: 31009047
Eur J Hum Genet. 2016 Nov;24(11):1630-1634
pubmed: 27245298
Brain. 2020 Feb 1;143(2):491-502
pubmed: 31851307
Biochem J. 2013 Jun 15;452(3):369-79
pubmed: 23725456
Cell Growth Differ. 1990 Mar;1(3):119-27
pubmed: 2078500
J Virol. 2012 Feb;86(3):1661-9
pubmed: 22090134
J Biol Chem. 1994 Oct 14;269(41):25426-31
pubmed: 7929240
FEBS Lett. 2014 Jan 31;588(3):482-9
pubmed: 24374333
Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14564-9
pubmed: 9826740
J Neurol Sci. 2017 Apr 15;375:245-247
pubmed: 28320140
Nat Protoc. 2006;1(5):2416-22
pubmed: 17406485
Brain Pathol. 2017 Jan;27(1):64-76
pubmed: 26822507