Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia.
climate change
freezing damage
late frost
phenology
spring leaf-out
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
02 06 2020
02 06 2020
Historique:
pubmed:
13
5
2020
medline:
19
8
2020
entrez:
13
5
2020
Statut:
ppublish
Résumé
Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees' adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species' innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.
Identifiants
pubmed: 32393624
pii: 1920816117
doi: 10.1073/pnas.1920816117
pmc: PMC7275740
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
12192-12200Déclaration de conflit d'intérêts
The authors declare no competing interest.
Références
Front Plant Sci. 2014 Oct 10;5:541
pubmed: 25346748
Glob Chang Biol. 2019 Nov;25(11):3781-3792
pubmed: 31436853
Ecol Lett. 2017 Apr;20(4):452-460
pubmed: 28194867
Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723):
pubmed: 28483866
Science. 2016 Oct 14;354(6309):
pubmed: 27738143
Nature. 2019 May;569(7756):404-408
pubmed: 31092941
New Phytol. 2013 Dec;200(4):1166-75
pubmed: 23952607
New Phytol. 2017 Oct;216(1):113-123
pubmed: 28737248
New Phytol. 2014 Sep;203(4):1208-19
pubmed: 24942252
BMC Bioinformatics. 2013 Jan 16;14:16
pubmed: 23324024
Science. 2016 Jun 24;352(6293):1517-8
pubmed: 27339968
Nature. 2018 Aug;560(7718):368-371
pubmed: 30089905
New Phytol. 2019 Jan;221(2):789-795
pubmed: 30240028
Glob Chang Biol. 2019 Jul;25(7):2209-2220
pubmed: 30953573
Ecology. 2013 Jan;94(1):41-50
pubmed: 23600239
Science. 2010 Mar 19;327(5972):1461-2
pubmed: 20299580
Science. 2011 Jul 29;333(6042):616-20
pubmed: 21551030
Nat Ecol Evol. 2017 Nov;1(11):1655-1660
pubmed: 28963543
Nature. 2013 Aug 15;500(7462):287-95
pubmed: 23955228
Nat Commun. 2018 Jan 30;9(1):426
pubmed: 29382833
Am J Bot. 2013 Jul;100(7):1266-86
pubmed: 23757445
Nature. 2005 Sep 22;437(7058):529-33
pubmed: 16177786