The therapeutic potential of mesenchymal stem cells for cardiovascular diseases.


Journal

Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092

Informations de publication

Date de publication:
11 05 2020
Historique:
received: 25 02 2020
accepted: 15 04 2020
revised: 14 04 2020
entrez: 13 5 2020
pubmed: 13 5 2020
medline: 13 3 2021
Statut: epublish

Résumé

Mesenchymal stem cells (MSCs) are derived from a wide range of sources and easily isolated and cultured. MSCs have the capacity for in vitro amplification and self-renewal, low immunogenicity and immunomodulatory properties, and under certain conditions, MSCs can be differentiated into a variety of cells. In the cardiovascular system, MSCs can protect the myocardium by reducing the level of inflammation, promoting the differentiation of myocardial cells around infarct areas and angiogenesis, increasing apoptosis resistance, and inhibiting fibrosis, which are ideal qualities for cardiovascular repair. Preclinical studies have shown that MSCs can be transplanted and improve cardiac repair, but challenges, such as their low rate of migration to the ischemic myocardium, low tissue retention, and low survival rate after transplantation, remain. This article reviews the potential and methods of MSC transplantation in the treatment of cardiovascular diseases (CVDs) and the challenges of the clinical use of MSCs.

Identifiants

pubmed: 32393744
doi: 10.1038/s41419-020-2542-9
pii: 10.1038/s41419-020-2542-9
pmc: PMC7214402
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

349

Références

Mozaffarian, D. et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131, e29–e322 (2015).
pubmed: 25520374 pmcid: 25520374
Sliwa, K. & Ntusi, N. Battling cardiovascular diseases in a perfect storm. Circulation 139, 1658–1660 (2019).
pubmed: 30933612 doi: 10.1161/CIRCULATIONAHA.118.038001 pmcid: 30933612
Ji, S. T., Kim, H., Yun, J., Chung, J. S. & Kwon, S. M. Promising therapeutic strategies for mesenchymal stem cell-based cardiovascular regeneration: from cell priming to tissue engineering. Stem Cells Int. 2017, 3945403 (2017).
pubmed: 28303152 pmcid: 5337882
Sutton, M. G. & Sharpe, N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101, 2981–2988 (2000).
pubmed: 10869273 pmcid: 10869273 doi: 10.1161/01.CIR.101.25.2981
Karantalis, V., Balkan, W., Schulman, I. H., Hatzistergos, K. E. & Hare, J. M. Cell-based therapy for prevention and reversal of myocardial remodeling. Am. J. Physiol. Heart Circ. Physiol. 303, H256–H270 (2012).
pubmed: 22636682 pmcid: 3423164 doi: 10.1152/ajpheart.00221.2012
Choo, A., Ngo, A. S., Ding, V., Oh, S. & Kiang, L. S. Autogeneic feeders for the culture of undifferentiated human embryonic stem cells in feeder and feeder-free conditions. Methods Cell Biol. 86, 15–28 (2008).
pubmed: 18442642 doi: 10.1016/S0091-679X(08)00002-2 pmcid: 18442642
Harvey, A., Caretti, G., Moresi, V., Renzini, A. & Adamo, S. Interplay between metabolites and the epigenome in regulating embryonic and adult stem cell potency and maintenance. Stem Cell Rep. 13, 573–589 (2019).
doi: 10.1016/j.stemcr.2019.09.003
Wei, X. et al. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharm. Sin. 34, 747–754 (2013).
doi: 10.1038/aps.2013.50
Friedenstein, A. J., Chailakhjan, R. K. & Lalykina, K. S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3, 393–403 (1970).
pubmed: 5523063 pmcid: 5523063
Fraser, J. K., Wulur, I., Alfonso, Z. & Hedrick, M. H. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 24, 150–154 (2006).
pubmed: 16488036 doi: 10.1016/j.tibtech.2006.01.010 pmcid: 16488036
Griffiths, M. J., Bonnet, D. & Janes, S. M. Stem cells of the alveolar epithelium. Lancet 366, 249–260 (2005).
pubmed: 16023517 doi: 10.1016/S0140-6736(05)66916-4 pmcid: 16023517
Tondreau, T. et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 23, 1105–1112 (2005).
pubmed: 15955825 doi: 10.1634/stemcells.2004-0330 pmcid: 15955825
Schwab, K. E., Hutchinson, P. & Gargett, C. E. Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Hum. Reprod. 23, 934–943 (2008).
pubmed: 18305000 doi: 10.1093/humrep/den051 pmcid: 18305000
Cao, C., Dong, Y. & Dong, Y. Study on culture and in vitro osteogenesis of blood-derived human mesenchymal stem cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 19, 642–647 (2005).
pubmed: 16130394 pmcid: 16130394
Yamada, Y. et al. A novel approach for myocardial regeneration with educated cord blood cells cocultured with cells from brown adipose tissue. Biochem. Biophys. Res. Commun. 353, 182–188 (2007).
pubmed: 17174277 doi: 10.1016/j.bbrc.2006.12.017 pmcid: 17174277
Prockop, D. J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74 (1997).
doi: 10.1126/science.276.5309.71
Liu, L. et al. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol. Biochem. 43, 52–68 (2017).
pubmed: 28848091 doi: 10.1159/000480317 pmcid: 28848091
Gonzalez-King, H. et al. Hypoxia inducible factor-1alpha potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells 35, 1747–1759 (2017).
pubmed: 28376567 doi: 10.1002/stem.2618 pmcid: 28376567
Qiu, G. et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res. Ther. 9, 320 (2018).
pubmed: 30463593 pmcid: 6249826 doi: 10.1186/s13287-018-1069-9
Ju, C. et al. Transplantation of cardiac mesenchymal stem cell-derived exosomes promotes repair in ischemic myocardium. J. Cardiovasc Transl. Res. 11, 420–428 (2018).
pubmed: 30232729 pmcid: 6212335 doi: 10.1007/s12265-018-9822-0
Yu, B. et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int. J. Cardiol. 182, 349–360 (2015).
pubmed: 25590961 doi: 10.1016/j.ijcard.2014.12.043 pmcid: 25590961
Chen, Y. et al. The enhanced effect and underlying mechanisms of mesenchymal stem cells with IL-33 overexpression on myocardial infarction. Stem Cell Res. Ther. 10, 295 (2019).
pubmed: 31547872 pmcid: 6757387 doi: 10.1186/s13287-019-1392-9
Ma, T. et al. MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int. 2018, 3290372 (2018).
pubmed: 30271437 pmcid: 6151206
Chaudhuri, R., Ramachandran, M., Moharil, P., Harumalani, M. & Jaiswal, A. K. Biomaterials and cells for cardiac tissue engineering: current choices. Mater. Sci. Eng. C. Mater. Biol. Appl. 79, 950–957 (2017).
pubmed: 28629100 doi: 10.1016/j.msec.2017.05.121 pmcid: 28629100
Szaraz, P., Gratch, Y. S., Iqbal, F. & Librach, C. L. In vitro differentiation of human mesenchymal stem cells into functional cardiomyocyte-like cells. J. Vis. Exp. https://doi.org/10.3791/55757 (2017).
doi: 10.3791/55757 pubmed: 28994816 pmcid: 5752259
Wang, X. et al. Concomitant retrograde coronary venous infusion of basic fibroblast growth factor enhances engraftment and differentiation of bone marrow mesenchymal stem cells for cardiac repair after myocardial infarction. Theranostics 5, 995–1006 (2015).
pubmed: 26155315 pmcid: 4493537 doi: 10.7150/thno.11607
Hafez, P. et al. Cardiomyogenic differentiation of human sternal bone marrow mesenchymal stem cells using a combination of basic fibroblast growth factor and hydrocortisone. Cell Biol. Int. 40, 55–64 (2016).
pubmed: 26289249 doi: 10.1002/cbin.10536 pmcid: 26289249
Ding, R. et al. Activation of Notch1 signalling promotes multi-lineage differentiation of c-Kit(POS)/NKX2.5(POS) bone marrow stem cells: implication in stem cell translational medicine. Stem Cell Res. Ther. 6, 91 (2015).
pubmed: 25956503 pmcid: 4446115 doi: 10.1186/s13287-015-0085-2
Shen, X. et al. Differentiation of mesenchymal stem cells into cardiomyocytes is regulated by miRNA-1-2 via WNT signaling pathway. J. Biomed. Sci. 24, 29 (2017).
pubmed: 28490365 pmcid: 5424345 doi: 10.1186/s12929-017-0337-9
Chiossone, L. et al. Mesenchymal stromal cells induce peculiar alternatively activated macrophages capable of dampening both innate and adaptive immune responses. Stem Cells 34, 1909–1921 (2016).
pubmed: 27015881 doi: 10.1002/stem.2369 pmcid: 27015881
Najar, M. et al. Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy 18, 160–171 (2016).
pubmed: 26794710 doi: 10.1016/j.jcyt.2015.10.011 pmcid: 26794710
Lambert, J. M., Lopez, E. F. & Lindsey, M. L. Macrophage roles following myocardial infarction. Int. J. Cardiol. 130, 147–158 (2008).
pubmed: 18656272 pmcid: 2857604 doi: 10.1016/j.ijcard.2008.04.059
Miteva, K. et al. Mesenchymal stromal cells modulate monocytes trafficking in coxsackievirus B3-induced myocarditis. Stem Cells Transl. Med. 6, 1249–1261 (2017).
pubmed: 28186704 pmcid: 5442851 doi: 10.1002/sctm.16-0353
Kim, J. & Hematti, P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp. Hematol. 37, 1445–1453 (2009).
pubmed: 19772890 pmcid: 2783735 doi: 10.1016/j.exphem.2009.09.004
Di Nicola, M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99, 3838–3843 (2002).
doi: 10.1182/blood.V99.10.3838
Ringden, O. et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81, 1390–1397 (2006).
pubmed: 16732175 doi: 10.1097/01.tp.0000214462.63943.14 pmcid: 16732175
Mandi, Y. & Vecsei, L. The kynurenine system and immunoregulation. J. Neural Transm. 119, 197–209 (2012).
pubmed: 21744051 doi: 10.1007/s00702-011-0681-y pmcid: 21744051
Spaggiari, G. M. et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111, 1327–1333 (2008).
pubmed: 17951526 doi: 10.1182/blood-2007-02-074997 pmcid: 17951526
Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N. & Papamichail, M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24, 74–85 (2006).
pubmed: 16099998 doi: 10.1634/stemcells.2004-0359
Ebelt, H. et al. Cellular cardiomyoplasty: improvement of left ventricular function correlates with the release of cardioactive cytokines. Stem Cells 25, 236–244 (2007).
pubmed: 16973829 doi: 10.1634/stemcells.2006-0374 pmcid: 16973829
Guo, J., Lin, G. S., Bao, C. Y., Hu, Z. M. & Hu, M. Y. Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction. Inflammation 30, 97–104 (2007).
pubmed: 17497204 doi: 10.1007/s10753-007-9025-3 pmcid: 17497204
Ohnishi, S. et al. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J. Mol. Cell Cardiol. 42, 88–97 (2007).
pubmed: 17101147 doi: 10.1016/j.yjmcc.2006.10.003 pmcid: 17101147
Asari, S. et al. Mesenchymal stem cells suppress B-cell terminal differentiation. Exp. Hematol. 37, 604–615 (2009).
pubmed: 19375651 pmcid: 2747661 doi: 10.1016/j.exphem.2009.01.005
van den Borne, S. W. et al. Myocardial remodeling after infarction: the role of myofibroblasts. Nat. Rev. Cardiol. 7, 30–37 (2010).
pubmed: 19949426 doi: 10.1038/nrcardio.2009.199 pmcid: 19949426
Gulati, A. et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 309, 896–908 (2013).
pubmed: 23462786 doi: 10.1001/jama.2013.1363 pmcid: 23462786
Fu, X. et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J. Clin. Invest. 128, 2127–2143 (2018).
pubmed: 29664017 pmcid: 5957472 doi: 10.1172/JCI98215
Li, X. et al. Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis. Protein Cell 6, 735–745 (2015).
pubmed: 26271509 pmcid: 4598323 doi: 10.1007/s13238-015-0196-7
Kishore, R. et al. Bone marrow progenitor cell therapy-mediated paracrine regulation of cardiac miRNA-155 modulates fibrotic response in diabetic hearts. PLoS ONE 8, e60161 (2013).
pubmed: 23560074 pmcid: 3613379 doi: 10.1371/journal.pone.0060161
Silva, D. N. et al. IGF-1-overexpressing mesenchymal stem/stromal cells promote immunomodulatory and proregenerative effects in chronic experimental chagas disease. Stem Cells Int. 2018, 9108681 (2018).
pubmed: 30140292 pmcid: 6081563 doi: 10.1155/2018/9108681
Chen, Y. et al. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res. Ther. 8, 268 (2017).
pubmed: 29178928 pmcid: 5702098 doi: 10.1186/s13287-017-0722-z
Paduano, F. et al. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. J. Biomater. Sci. Polym. Ed. 28, 730–748 (2017).
pubmed: 28285576 doi: 10.1080/09205063.2017.1301770 pmcid: 28285576
Bordbar, S. et al. Production and evaluation of decellularized extracellular matrix hydrogel for cartilage regeneration derived from knee cartilage. J. Biomed. Mater. Res. A https://doi.org/10.1002/jbm.a.36871 (2020).
doi: 10.1002/jbm.a.36871 pubmed: 31894891 pmcid: 31894891
Fan, D., Takawale, A., Lee, J. & Kassiri, Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenes. Tissue Repair 5, 15 (2012).
doi: 10.1186/1755-1536-5-15
Cai, X. et al. Bone marrow derived pluripotent cells are pericytes which contribute to vascularization. Stem Cell Rev. 5, 437–445 (2009).
doi: 10.1007/s12015-009-9097-6
Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).
doi: 10.1016/j.stem.2008.07.003
Davani, S. et al. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 108(Suppl 1), II253–II258 (2003).
pubmed: 12970242 pmcid: 12970242
Gomes, S. A. et al. S-nitrosoglutathione reductase (GSNOR) enhances vasculogenesis by mesenchymal stem cells. Proc. Natl Acad. Sci. USA 110, 2834–2839 (2013).
pubmed: 23288904 doi: 10.1073/pnas.1220185110 pmcid: 23288904
Tang, Y. et al. Targeted delivery of vascular endothelial growth factor improves stem cell therapy in a rat myocardial infarction model. Nanomedicine 10, 1711–1718 (2014).
pubmed: 24941463 pmcid: 4253977 doi: 10.1016/j.nano.2014.06.001
Gao, X. R., Xu, H. J., Wang, L. F., Liu, C. B. & Yu, F. Mesenchymal stem cell transplantation carried in SVVYGLR modified self-assembling peptide promoted cardiac repair and angiogenesis after myocardial infarction. Biochem. Biophys. Res. Commun. 491, 112–118 (2017).
pubmed: 28709866 doi: 10.1016/j.bbrc.2017.07.056 pmcid: 28709866
Hare, J. M. et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol. 54, 2277–2286 (2009).
pubmed: 19958962 pmcid: 3580848 doi: 10.1016/j.jacc.2009.06.055
Can, A. et al. Human Umbilical Cord Mesenchymal Stromal Cell Transplantation in Myocardial Ischemia (HUC-HEART Trial). A study protocol of a phase 1/2, controlled and randomized trial in combination with coronary artery bypass grafting. Stem Cell Rev. Rep. 11, 752–760 (2015).
pubmed: 26123356 doi: 10.1007/s12015-015-9601-0 pmcid: 26123356
Bartolucci, J. et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]). Circ. Res. 121, 1192–1204 (2017).
pubmed: 28974553 pmcid: 6372053 doi: 10.1161/CIRCRESAHA.117.310712
Deuse, T. et al. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant. 20, 655–667 (2011).
pubmed: 21054940 doi: 10.3727/096368910X536473 pmcid: 21054940
Stubbendorff, M. et al. Immunological properties of extraembryonic human mesenchymal stromal cells derived from gestational tissue. Stem Cells Dev. 22, 2619–2629 (2013).
pubmed: 23711207 doi: 10.1089/scd.2013.0043 pmcid: 23711207
Li, L., Chen, X., Wang, W. E. & Zeng, C. How to improve the survival of transplanted mesenchymal stem cell in ischemic heart? Stem Cells Int. 2016, 9682757 (2016).
pubmed: 26681958 pmcid: 26681958
Blocki, A. et al. Microcapsules engineered to support mesenchymal stem cell (MSC) survival and proliferation enable long-term retention of MSCs in infarcted myocardium. Biomaterials 53, 12–24 (2015).
pubmed: 25890702 doi: 10.1016/j.biomaterials.2015.02.075 pmcid: 25890702
van der Spoel, T. I. et al. Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc. Res. 91, 649–658 (2011).
pubmed: 21498423 doi: 10.1093/cvr/cvr113 pmcid: 21498423
Chu, J. et al. PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing. Nanoscale 10, 9547–9560 (2018).
pubmed: 29745944 doi: 10.1039/C8NR02538J pmcid: 29745944
Feng, J. et al. Sustained release of bioactive IGF-1 from a silk fibroin microsphere-based injectable alginate hydrogel for the treatment of myocardial infarction. J. Mater. Chem. B 8, 308–315 (2020).
pubmed: 31808500 doi: 10.1039/C9TB01971E pmcid: 31808500
Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).
pubmed: 14315085 doi: 10.1016/0014-4827(65)90211-9 pmcid: 14315085
Muraya, K., Kawasaki, T., Yamamoto, T. & Akutsu, H. Enhancement of cellular adhesion and proliferation in human mesenchymal stromal cells by the direct addition of recombinant collagen i peptide to the culture medium. Biores Open Access 8, 210–218 (2019).
pubmed: 31763065 pmcid: 6873350 doi: 10.1089/biores.2019.0012
Bai, T. et al. Epidermal growth factor induces proliferation of hair follicle-derived mesenchymal stem cells through epidermal growth factor receptor-mediated activation of ERK and AKT signaling pathways associated with upregulation of cyclin D1 and downregulation of p16. Stem Cells Dev. 26, 113–122 (2017).
pubmed: 27702388 doi: 10.1089/scd.2016.0234 pmcid: 27702388
Bernardo, M. E. et al. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. 67, 9142–9149 (2007).
pubmed: 17909019 doi: 10.1158/0008-5472.CAN-06-4690 pmcid: 17909019
Casalbore, P. et al. Tumorigenic potential of olfactory bulb-derived human adult neural stem cells associates with activation of TERT and NOTCH1. PLoS ONE 4, e4434 (2009).
pubmed: 19209236 pmcid: 2637538 doi: 10.1371/journal.pone.0004434
Naftali-Shani, N. et al. Left ventricular dysfunction switches mesenchymal stromal cells toward an inflammatory phenotype and impairs their reparative properties via toll-like receptor-4. Circulation 135, 2271–2287 (2017).
pubmed: 28356441 doi: 10.1161/CIRCULATIONAHA.116.023527 pmcid: 28356441
Huang, B. et al. Myocardial transfection of hypoxia-inducible factor-1alpha and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem Cell Res. Ther. 5, 22 (2014).
pubmed: 24507665 pmcid: 4055118 doi: 10.1186/scrt410
Zhang, Z., Zhou, S., Mei, Z. & Zhang, M. Inhibition of p38MAPK potentiates mesenchymal stem cell therapy against myocardial infarction injury in rats. Mol. Med. Rep. 16, 3489–3493 (2017).
pubmed: 28713990 doi: 10.3892/mmr.2017.6973 pmcid: 28713990
Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).
pubmed: 28304224 doi: 10.1056/NEJMoa1615664 pmcid: 28304224
Berman, A. Y., Motechin, R. A., Wiesenfeld, M. Y. & Holz, M. K. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol. 1, https://doi.org/10.1038/s41698-017-0038-6 (2017).
Zhou, Y. Z. et al. Mesenchymal stem cell-derived conditioned medium attenuate angiotensin II-induced aortic aneurysm growth by modulating macrophage polarization. J. Cell Mol. Med. https://doi.org/10.1111/jcmm.14694 (2019).
doi: 10.1111/jcmm.14694 pubmed: 31883300 pmcid: 6991654
Spinosa, M. et al. Human mesenchymal stromal cell-derived extracellular vesicles attenuate aortic aneurysm formation and macrophage activation via microRNA-147. FASEB J. https://doi.org/10.1096/fj.201701138RR (2018).
Tao, X. et al. HMGB1-modified mesenchymal stem cells attenuate radiation-induced vascular injury possibly via their high motility and facilitation of endothelial differentiation. Stem Cell Res. Ther. 10, 92 (2019).
pubmed: 30867070 pmcid: 6416980 doi: 10.1186/s13287-019-1197-x
Colmegna, I. & Stochaj, U. MSC—targets for atherosclerosis therapy. Aging 11, 285–286 (2018).
pubmed: 30591619 pmcid: 6366979 doi: 10.18632/aging.101735
Li, F., Guo, X. & Chen, S. Y. Function and therapeutic potential of mesenchymal stem cells in atherosclerosis. Front Cardiovasc Med 4, 32 (2017).
pubmed: 28589127 pmcid: 5438961 doi: 10.3389/fcvm.2017.00032
Butler, J. et al. Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: safety and efficacy results of a phase II—a randomized trial. Circ. Res. 120, 332–340 (2017).
pubmed: 27856497 doi: 10.1161/CIRCRESAHA.116.309717 pmcid: 27856497
Gao, L. R. et al. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med. 13, 162 (2015).
pubmed: 26162993 pmcid: 4499169 doi: 10.1186/s12916-015-0399-z
Lee, J. W. et al. A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J. Korean Med. Sci. 29, 23–31 (2014).
pubmed: 24431901 doi: 10.3346/jkms.2014.29.1.23 pmcid: 24431901

Auteurs

Yajun Guo (Y)

Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China.
Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou 215006, China.

Yunsheng Yu (Y)

Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China.
Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou 215006, China.

Shijun Hu (S)

Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China. shijunhu@suda.edu.cn.
Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou 215006, China. shijunhu@suda.edu.cn.
State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215123, China. shijunhu@suda.edu.cn.
Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China. shijunhu@suda.edu.cn.

Yueqiu Chen (Y)

Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China. chenyueqiu-216@163.com.
Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou 215006, China. chenyueqiu-216@163.com.

Zhenya Shen (Z)

Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China. uuzyshen@aliyun.com.
Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou 215006, China. uuzyshen@aliyun.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH