Control of electron-electron interaction in graphene by proximity screenings.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
11 May 2020
11 May 2020
Historique:
received:
28
11
2019
accepted:
25
03
2020
entrez:
13
5
2020
pubmed:
13
5
2020
medline:
13
5
2020
Statut:
epublish
Résumé
Electron-electron interactions play a critical role in many condensed matter phenomena, and it is tempting to find a way to control them by changing the interactions' strength. One possible approach is to place a studied system in proximity of a metal, which induces additional screening and hence suppresses electron interactions. Here, using devices with atomically-thin gate dielectrics and atomically-flat metallic gates, we measure the electron-electron scattering length in graphene and report qualitative deviations from the standard behavior. The changes induced by screening become important only at gate dielectric thicknesses of a few nm, much smaller than a typical separation between electrons. Our theoretical analysis agrees well with the scattering rates extracted from measurements of electron viscosity in monolayer graphene and of umklapp electron-electron scattering in graphene superlattices. The results provide a guidance for future attempts to achieve proximity screening of many-body phenomena in two-dimensional systems.
Identifiants
pubmed: 32393747
doi: 10.1038/s41467-020-15829-1
pii: 10.1038/s41467-020-15829-1
pmc: PMC7214472
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2339Commentaires et corrections
Type : ErratumIn
Références
Yankowitz, M. et al. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 1, 112–125 (2019).
doi: 10.1038/s42254-018-0016-0
Ponomarenko, L. A. et al. Tunable metal-insulator transition in double-layer graphene heterostructures. Nat. Phys. 7, 958–961 (2011).
doi: 10.1038/nphys2114
Lu, C.-P. et al. Local, global, and nonlinear screening in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 113, 6623–6628 (2016).
doi: 10.1073/pnas.1606278113
Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).
doi: 10.1126/science.aan2735
Alcaraz Iranzo, D. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).
doi: 10.1126/science.aar8438
Qiu, Z. et al. Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor. Sci. Adv. 5, eaaw2347 (2019).
doi: 10.1126/sciadv.aaw2347
Waldecker, L. et al. Rigid band shifts in two-dimensional semiconductors through external dielectric screening. Phys. Rev. Lett. 123, 206403 (2019).
doi: 10.1103/PhysRevLett.123.206403
Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).
doi: 10.1021/nl3002205
Imry, Y. Introduction to Mesoscopic Physics (Oxford University Press, Oxford, 1997).
Giuliani, G. F. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005).
doi: 10.1017/CBO9780511619915
Lucas, A. & Fong, K. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 053001 (2018).
doi: 10.1088/1361-648X/aaa274
Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).
doi: 10.1126/science.aad0201
Bandurin, D. A. et al. Fluidity onset in graphene. Nat. Commun. 9, 4533 (2018).
doi: 10.1038/s41467-018-07004-4
Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 (2017).
doi: 10.1038/nphys4240
Berdyugin, A. I. et al. Measuring Hall viscosity of graphene’s electron fluid. Science 364, 162–165 (2019).
pubmed: 30819929
Principi, A., Vignale, G., Carrega, M. & Polini, M. Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene sheet. Phys. Rev. B 93, 125410 (2016).
doi: 10.1103/PhysRevB.93.125410
Pellegrino, F. M. D., Torre, I. & Polini, M. Nonlocal transport and the Hall viscosity of two-dimensional hydrodynamic electron liquids. Phys. Rev. B 96, 195401 (2017).
doi: 10.1103/PhysRevB.96.195401
Guo, H., Ilseven, E., Falkovich, G. & Levitov, L. S. Higher-than-ballistic conduction of viscous electron flows. Proc. Natl Acad. Sci. USA 114, 3068–3073 (2017).
doi: 10.1073/pnas.1612181114
Wallbank, J. R. et al. Excess resistivity in graphene superlattices caused by umklapp electron–electron scattering. Nat. Phys. 15, 32–36 (2019).
doi: 10.1038/s41567-018-0278-6
Torre, I., Tomadin, A., Geim, A. K. & Polini, M. Nonlocal transport and the hydrodynamic shear viscosity in graphene. Phys. Rev. B 92, 165433 (2015).
doi: 10.1103/PhysRevB.92.165433
Li, Q. & Das Sarma, S. Finite temperature inelastic mean free path and quasiparticle lifetime in graphene. Phys. Rev. B 87, 085406 (2013).
doi: 10.1103/PhysRevB.87.085406
Polini, M. & Vignale, G. in No-nonsense Physicist: An Overview of Gabriele Giuliani’s Work and Life (eds. Polini, M. et al.) 107–124 (Scuola Normale Superiore, 2016).
Krishna Kumar, R. et al. High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. Science 357, 181–184 (2017).
doi: 10.1126/science.aal3357
Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).
doi: 10.1038/nphys2272
Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594 (2013).
doi: 10.1038/nature12187
Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).
doi: 10.1038/nature12186
Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).
doi: 10.1126/science.1237240
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
doi: 10.1038/nature26160
Pizarro, J. M., Rösner, M., Thomale, R., Valentí, R. & Wehling, T. O. Internal screening and dielectric engineering in magic-angle twisted bilayer graphene. Phys. Rev. B 100, 161102 (2019).
doi: 10.1103/PhysRevB.100.161102
Goodwin, Z. A. H. et al. Critical role of device geometry for the phase diagram of twisted bilayer graphene. Phys. Rev. B 101, 165110 (2020).
doi: 10.1103/PhysRevB.101.165110
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).
doi: 10.1126/science.1244358
Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).
doi: 10.1021/acs.nanolett.5b00648
Hwang, E. H. & Das Sarma, S. Screening, Kohn anomaly, Friedel oscillation, and RKKY interaction in bilayer graphene. Phys. Rev. Lett. 101, 156802 (2008).
doi: 10.1103/PhysRevLett.101.156802
Borghi, G., Polini, M., Asgari, R. & MacDonald, A. H. Dynamical response functions and collective modes of bilayer graphene. Phys. Rev. B 80, 241402(R) (2009).
doi: 10.1103/PhysRevB.80.241402