Response surface optimization of biocompatible elastic nanovesicles loaded with rosuvastatin calcium: enhanced bioavailability and anticancer efficacy.
Anticancer
Clove oil
Nanovesicles
Statins
Transdermal
Tween
Journal
Drug delivery and translational research
ISSN: 2190-3948
Titre abrégé: Drug Deliv Transl Res
Pays: United States
ID NLM: 101540061
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
pubmed:
13
5
2020
medline:
3
11
2021
entrez:
13
5
2020
Statut:
ppublish
Résumé
Statins are mainly used for the treatment of hyperlipidemia, but recently, their anticancer role was extremely investigated. The goal of this study was to statistically optimize novel elastic nanovesicles containing rosuvastatin calcium to improve its transdermal permeability, bioavailability, and anticancer effect. The elastic nanovesicles were composed of Tween® 80, cetyl alcohol, and clove oil. The nanodispersions were investigated for their entrapment efficiency, particle size, zeta potential, polydispersity index, and elasticity. The optimized elastic nanovesicular dispersion is composed of 20% cetyl alcohol, 53.47% Tween 80, and 26.53% clove oil. Carboxy methylcellulose was utilized to convert the optimized elastic nanovesicular dispersion into elastic nanovesicular gels. Both the optimized dispersion and the optimized gel (containing 2% w/v carboxymethylcellulose) were subjected to in vitro release study, scanning and transmission electron microscopy, histopathological evaluation, and ex vivo permeation. The cell viability assay of the optimized gel on MCF-7 and Hela cell lines showed significant antiproliferative and potent cytotoxic effects when compared to the drug gel. Moreover, the optimized gel accomplished a significant increase in rosuvastatin bioavailability upon comparison with the drug gel. The optimized gel could be considered as a promising nanocarrier for statins transdermal delivery to increase their systemic bioavailability and anticancer effect. Graphical abstract.
Identifiants
pubmed: 32394333
doi: 10.1007/s13346-020-00761-0
pii: 10.1007/s13346-020-00761-0
doi:
Substances chimiques
Antineoplastic Agents
0
Drug Carriers
0
Rosuvastatin Calcium
83MVU38M7Q
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1459-1475Références
Gadad AP, Tigadi SG, Dandagi PM. Rosuvastatin loaded nanostructured lipid carrier: for enhancement of Oral bioavailability. Indian J Pharm Educ Res. 2016;50:605–11.
Panchal AV, Mehta M, Shah VH, Upadhyay U. Formulation and in-vitro evaluation of mucoadhesive bilayered buccal tablets of rosuvastatin calcium. Int J Pharm Sci Res. 2012;3:2733–40.
Kapur NK. Rosuvastatin: a highly potent statin for the prevention and management of coronary artery disease. Expert Rev Cardiovasc Ther. 2007;5:161–75.
pubmed: 17338662
Schachter M. Chemical, pharmacokinetic and pharmacodynamics propertiesof statins: an update. Fund Clin Pharmacol. 2004;19:117–25.
Chow S. Immunomodulation by statins: mechanisms and potential impact on autoimmune diseases. Arch Immunol Ther Exp. 2009;57:243–51.
Ma YX, Li WHXQ. Rosuvastatin inhibits TGF-beta1 expression and alleviates myocardial fibrosis in diabetic rats. Pharmazie. 2013;68:355–8.
pubmed: 23802433
Chen C-H, Cheng C-Y, Chen Y-C, Sue Y-M, Hsu Y-H, Tsai W-L, et al. Rosuvastatin inhibits pressure-induced fibrotic responses via the expression regulation of prostacyclin and prostaglandin E2 in rat renal tubular cells. Eur J Pharmacol Elsevier. 2013;700:65–73.
pubmed: 23276663
Miersch S, Sliskovic I, Raturi AMB. Antioxidant and antiplatelet effects of rosuvastatin in a hamster model of prediabetes. Free Radic Biol Med. 2007;42:270–9.
pubmed: 17189832
Resch U, Tatzber F, Budinsky ASH. Reduction of oxidative stress and modulation of autoantibodies against modified low-density lipoprotein after rosuvastatin therapy. Br J Clin Pharmacol. 2006;61:262–74.
pubmed: 16487219
Masadeh M, Mhaidat N, Alzoubi K, Al-azzam S, Alnasser Z. Antibacterial activity of statins: A comparative study of atorvastatin, simvastatin, and rosuvastatin. Ann Clin Microbiol Antimicrob. 2012;11:1–5.
Kata D, Földesi IFL. Rosuvastatin enhances anti-inflammatory and inhibits pro-inflammatory functions in cultured microglial cells. Neuroscience. 2016;314:47–63.
pubmed: 26633263
Sicard P, Delemasure S, Korandji C, Segueira-Legrand A, Lauzier B, Guilland J-C, et al. Anti-hypertensive effects of rosuvastatin are associated with decreased inflammation and oxidative stress markers in hypertensive rats. Free Radic Res. 2008;42:226–36.
pubmed: 18344117
Semenova AE, Sergienko MV IV, et al. Effect of rosuvastatin therapy and myocardial revascularization on angiogenesis in coronary artery disease patients. Kardiologiia. 2007;47:4–8.
pubmed: 18260956
Hawk MA, Cesen KT, Siglin JC, Stoner GD, Ruch RJ. Inhibition of lung tumor cell growth in vitro and mouse lung tumor formation by lovastatin. Cancer Lett. 1996;109:217–22.
pubmed: 9020924
Mueck AO, Seeger H, Wallwiener D. Effect of statins combined with estradiol on the proliferation of human receptor-positive and receptor-negative breast cancer cells. Menopause. 2003;10:332–6.
pubmed: 12851516
Kusama T, Mukai M, Iwasaki T, Tatsuta M, Matsumoto Y, Akedo H, et al. 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors reduce human pancreatic cancer cell invasion and metastasis. Gastroenterology. 2002;122:308–17.
pubmed: 11832446
Kusama T, Mukai M, Iwasaki T, Tatsuta M, Matsumoto Y, Akedo H, et al. Inhibition of epidermal growth factor-induced RhoA translocation and invasion of human pancreatic cancer cells by 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors. Cancer Res. 2001;61:4885–91.
pubmed: 11406567
Müller C, Bockhorn A, Klusmeier S, Kiehl M, Roeder C, Kalthoff H, et al. Lovastatin inhibits proliferation of pancreatic cancer cell lines with mutant as well as with wild-type K-ras oncogene but has different effects on protein phosphorylation and induction of apoptosis. Int J Oncol. 1998;12:717–40.
pubmed: 9472115
Sumi S, Beauchamp RD, Townsend CM Jr, Uchida T, Murakami M, Rajaraman ST, et al. Inhibition of pancreatic adenocarcinoma cell growth by lovastatin. Gastroenterology. 1992;103:982–9.
pubmed: 1499946
Agarwal B, Bhendwal S, Halmos B, Moss SF, Ramey WG, Holt PR. Lovastatin augments apoptosis induced by chemotherapeutic agents in colon cancer cells. Clin Cancer Res. 1999;5:2223–9.
pubmed: 10473109
Gizzo S, Quaranta M, Battista Nardelli G, Noventa M. Lipophilic statins as anticancer agents: molecular targeted actions and proposal in advanced gynaecological malignancies. Curr Drug Targets. 2015;16:1142–59.
pubmed: 25901529
Kawata S, Nagase T, Yamasaki E, Ishiguro H, Matsuzawa Y. Modulation of the mevalonate pathway and cell growth by pravastatin and d-limonene in a human hepatoma cell line (Hep G2). Br J Cancer. 1994;69:1015–20.
pubmed: 8198962
pmcid: 1969414
Sugiyama M, Kodama T, Konishi K, Abe K, Asami S, Oikawa S. Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells. Biochem Biophys Res Commun. 2000;271:688–92.
pubmed: 10814523
Thurnher M, Nussbaumer O, Gruenbacher G. Novel aspects of mevalonate pathway inhibitors as antitumor agents. Clin Cancer Res. 2012;18:3524–31.
pubmed: 22529099
Zhang J, Yang Z, Xie L, Xu L, Xu DLX. Statins, autophagy and cancer metastasis. Int J Biochem Cell Biol. 2013;45:745–52.
pubmed: 23147595
Chan K, Oza A, Siu L. The statins as anticancer agents. Clin Cancer Res. 2003;9:10–9.
pubmed: 12538446
Walker K, FOlson M. Targeting Ras and Rho GTPases as opportunities for cancer therapeutics. Curr Opin Genet Dev. 2005;15:62–8.
pubmed: 15661535
Mo H, Elson CE. Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. In: Exp Biol Med, vol. 229. London: SAGE PublicationsSage UK; 2004. p. 567–85.
van de Donk N, Bloem A, Spek E, Lokhorst H. New treatment strategies for multiple myeloma by targeting BCL-2 and the mevalonate pathway. Curr Pharm Des. 2006;12:327–40.
pubmed: 16454747
Dalenc F, Giamarchi C, Petit M, Poirot M, Favre G, Faye J-C. Farnesyl-transferase inhibitor R115,777 enhances tamoxifen inhibition of MCF-7 cell growth through estrogen receptor dependent and independent pathways. Breast Cancer Res BioMed Central. 2005;7:R1159–67.
pubmed: 16457696
pmcid: 1410750
Fernández C, Lobom M, Gómez-Coronado D, Lasunción M. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation. Exp Cell Res. 2004;300:109–20.
pubmed: 15383319
Wong WW, Dimitroulakos JMM, Penn LZ. HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia. 2002;16:508–19.
pubmed: 11960327
Sassano APL. Statins in tumor suppression. Cancer Lett. 2008;260:11–9.
pubmed: 18180097
Cafforio P, Dammacco F, Gernone A, Silvestris F. Statins activate the mitochondrial pathway of apoptosis in human lymphoblasts and myeloma cells. Carcinogenesis. 2005;26:883–91.
pubmed: 15705602
Karasulu HY, Gündoğdu E, Turgay T, Türk UÖ, Apaydın S, Şimşir IY. Development and optimization of self-emulsifying drug Delivery systems (SEDDS) for enhanced dissolution and permeability of rosuvastatin. Curr Drug Deliv. 2016;13:362–70.
pubmed: 27230902
Pal T, Saha D, Maity S. Bioequivalence modulation with modified starch in orodispersible tablets in comparison to marketed conventional tablets of rosuvastatin calcium. Eur J Pharm Med Res. 2016;3:236–49.
Balakumar K, Vijaya C, Tamil N, Hari R, Abdu S. Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B Biointerfaces. Elsevier B.V. 2013;112:337–43.
pubmed: 24012665
Hamidreza KM, Alimohammadi N, Danafar H. Preparation of biocompatible copolymeric micelles as a carrier of atorvastatin and rosuvastatin for potential anticancer activity study. Pharm Dev Technol Taylor & Francis. 2019;24:303–13.
Chein YW. Transdermal controlled system medication. Marcel Dekkar, New York. 1987;9:697–703.
Shamma RN, Elsayed I. Transfersomal lyophilized gel of buspirone HCl: formulation, evaluation and statistical optimization. J Liposome Res. 2013;23:244–54.
pubmed: 23713516
Garg S, Pradeep AR. 1.2% Rosuvastatin and 1.2% atorvastatin gel local drug delivery and redelivery in the treatment of class ii furcation defects: a randomized controlled clinical trial. J Periodontol. 2016;88:259–65.
pubmed: 27715376
Pradeep AR, Karvekar S, Nagpal K, Patnaik K, Guruprasad CNKK. Efficacy of locally delivered 1.2% rosuvastatin gel to non-surgical treatment of patients with chronic periodontitis: a randomized, placebo-controlled clinical trial. J Periodontol. 2015;86:738–45.
pubmed: 25786565
Gürer B, Kahveci R, Gökçe E, Ozevren H, Turkoglu E, Gökçe A. Evaluation of topical application and systemic administration of rosuvastatin in preventing epidural fibrosis in rats. Spine J. 2015;15:522–9.
pubmed: 25452015
Wu H, Germanov AV, Goryaeva GL, Yachmenev AN, Gordienko DI, Kuzin VV, et al. The topical application of rosuvastatin in preventing knee intra-articular adhesion in rats. Med Sci Monit. 2016;22:1403–9.
pubmed: 27115197
pmcid: 4913821
Song D, Chiu W. Analytical interference of carbamazepine on the Abbott TDx and Abbott Axsym tricyclic antidepressant assays. Pathology. 2009;41:688–9.
pubmed: 20001350
Dudhipala N, Veerabrahma K. Improved anti-hyperlipidemic activity of rosuvastatin calcium via lipid nanoparticles: pharmacokinetic and pharmacodynamic evaluation. Eur J Pharm Biopharm. 2017;110:47–57.
pubmed: 27810472
Palani K, Gv PC, Kesavan SK. Enhancement of rosuvastatin calcium bioavailability applying nanocrystal technology and in-vitro , in-vivo evaluations. Asian J Pharm Clin Res. 2015;8:88–92.
Neubert RHH. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm. 2011;77:1–2.
pubmed: 21111043
Schwarz JC, Weixelbaum A, Pagitsch E, Löw M. RGP and VC. Nanocarriers for dermal drug delivery: influence of preparation method, carrier type and rheological properties. Int J Pharm. 2012;437:83–8.
pubmed: 22903049
Herman A, Herman AP. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review. J Pharm Pharmacol. 2014;67:473–85.
pubmed: 25557808
Shen Q, Li W, Li W. The effect of clove oil on the transdermal delivery of ibuprofen in the rabbit by in vitro and in vivo methods. Drug Dev Ind Pharm. 2007;33:1369–74.
pubmed: 18097811
Chen J, Jiang Q, Wu Y, Liu P, Yao J, Lu Q, et al. Potential of essential oils as penetration enhancers for transdermal administration of ibuprofen to treat dysmenorrhoea. Molecules. 2015;20:18219–36.
pubmed: 26457698
pmcid: 6332003
Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechol. 2012;1:147–68.
Mishra D, Garg M, Dubey V, Jain S, Jain NK. Elastic liposomes mediated transdermal delivery of an anti-hypertensive agent: propranolol hydrochloride. J Pharm Sci. 2007;96:145–55.
pubmed: 16960826
Jin N, Zhao YX, Deng SH, Sun Q. Preparation and in vitro anticancer activity of oxymatrine mixed micellar nanoparticles. Pharmazie. 2011;66:506–10.
pubmed: 21812325
Mu C-F, Balakrishnan P, Cui F-D, Yin Y-M, Lee Y-B, Choi H-G. The effects of mixed MPEG-PLA/Pluronic copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials. 2010;31:2371–9.
pubmed: 20031202
van den Bergh BA, Wertz PW, Junginger HE, Bouwstra JA. Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements. Int J Pharm. Elsevier. 2001;217:13–24.
pubmed: 11292538
Trotta M, Peira E, Carlotti ME, Gallarate M. Deformable liposomes for dermal administration of methotrexate. Int J Pharm. Elsevier. 2004;270:119–25.
pubmed: 14726128
Abdelbary AA, Abd-Elsalam WH, Al-mahallawi AM. Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: In vitro characterization, ex vivo permeation and in vivo safety assessment. Int J Pharm. Elsevier B.V. 2016;513:688–96.
pubmed: 27717916
El-Dahmy RM, Elsayed I, Elshafeey AH, El Gawad NAA, El-Gazayerly ON. Optimization of long circulating mixed polymeric micelles containing vinpocetine using simple lattice mixture design, in vitro and in vivo characterization. Int J Pharm. Elsevier. 2014;477:39–46.
pubmed: 25290813
Aburahma M, Abdelbary G. Novel diphenyl dimethyl bicarboxylate provesicular powders with enhanced hepatocurative activity: preparation, optimization, in vitro/in vivo evaluation. Int J Pharm. 2012;422:139–50.
pubmed: 22079716
Abdelbary GA, Tadros MI. Brain targeting of olanzapine via intranasal delivery of core–shell difunctional block copolymer mixed nanomicellar carriers: in vitro characterization, ex vivo estimation of nasal toxicity and in vivo biodistribution studies. Inter J Pharm Elsevier. 2013;452:300–10.
El Maghraby GM. Self-microemulsifying and microemulsion systems for transdermal delivery of indomethacin: effect of phase transition. Colloids Surf B Biointerfaces. 2010;75:595–600.
pubmed: 19892531
Costa P, Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci Elsevier. 2001;13:123–33.
pubmed: 11297896
Lokhande AB, Mishra S, Kulkarni RD, Naik JB. Preparation and characterization of repaglinide loaded ethylcellulose nanoparticles by solvent diffusion technique using high pressure homogenizer. J Pharm Res Elsevier. 2013;7:421–6.
Morsi NM, Abdelbary GA, Ahmed MA. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: development and in vitro/ in vivo characterization. Eur J Pharm Biopharm. 2014;86:178–89.
pubmed: 23688805
Pillai O, Panchagnula R. Transdermal delivery of insulin from poloxamer gel: ex vivo and in vivo skin permeation studies in rat using iontophoresis and chemical enhancers. J Control Release Elsevier. 2003;89:127–40.
pubmed: 12695068
Narapusetti A, Bethanabhatla SS, Sockalingam A, Repaka N, Saritha V. Simultaneous determination of rosuvastatin and amlodipine in human plasma using tandem mass spectrometry: application to disposition kinetics. J Adv Res Cairo University. 2015;6:931–40.
pubmed: 26644931
El Zaafarany GM, Awad GAS, Holayel SMMN. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010;397:164–72.
pubmed: 20599487
Abdelrahman FE, Elsayed I, Gad MK, Badr AMM. Investigating the cubosomal ability for transnasal brain targeting: in vitro optimization, ex vivo permeation and in vivo biodistribution. Int J Pharm. 2015;490:281–91.
pubmed: 26026251
Al-Mahallawi AM, Khowessah OMSR. Nano-transfersomal ciprofloxacin loaded vesicles for non-invasive trans-tympanic ototopical delivery: in-vitro optimization, ex-vivo permeation studies, and in-vivo assessment. Int J Pharm. 2014;472:304–14.
pubmed: 24971692
Bancroft JD, MG. Theory and practice of histological techniques, vol. xii. 5th ed. London and New York: Churchill Livingstone; 2002.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods Elsevier. 1983;65:55–63.
Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. The 1996 guide for the care and use of laboratory animals. ILAR J. 1997;38:41–8.
pubmed: 11528046
Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–61.
pubmed: 17942826
El-Kommos ME, Mohamed NA, Ali HRH, Hakiem AFA. Micellar electrokinetic chromatographic determination of rosuvastatin in rabbit plasma and evaluation of its pharmacokinetics and interaction with niacin. Biomed Chromatogr. 2014;28:1828–38.
pubmed: 24828212
Shah VP, Midha KK, Dighe S, McGilveray IJ, Skelly JP, Yacobi A, et al. Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies. Conference report. Eur J Drug Metab Pharmacokinet. 1991;16:249.
pubmed: 1823867
Shargel L, Wu-Pong S, Yu A. Applied biopharmaceutics & pharmacokinetics, vol. 457. New York: Applet Lange Rev Hill, Med Pub; 2005.
Verma DD, Verma S, Blume G, Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm. 2003;258:141–51.
pubmed: 12753761
du Plessis J, Ramachandran C, Weiner N, Müller D. The influence of particle size of liposomes on the deposition of drug into skin. Int J Pharm. 1994;103:277–82.
Annadurai G, Ling LY, Lee JF. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida. J Hazard Mater. 2008;151:171–8.
pubmed: 17618738
de Lima LS, Araujo MD, Quináia SP, Migliorine DW, Garcia JR. Adsorption modeling of Cr, Cd and Cu on activated carbon of different origins by using fractional factorial design. Chem Eng J. 2011;166:881–9.
Xu H, He L, Nie S. Optimized preparation of vinpocetine proliposomes by a novel method and in vivo evaluation of its pharmacokinetics in New Zealand rabbits. J Control Release. 2009;140:61–8.
pubmed: 19651165
Abdelbary G, Fahmy RH. Diazepam-loaded solid lipid nanoparticles: design and characterization. Aaps Pharmscitech Springer. 2009;10:211–9.
pubmed: 19277870
pmcid: 2663687
Negi P, Ahmad F, Ahmad D. Development of a novel formulation for transdermal delivery of an antidepressant drug. Int J Pharm Sci Res. 2011;2:1766–71.
Hao YMLK. Entrapment and release difference resulting from hydrogen bonding interactions in niosome. Int J Pharm. 2011;403:245–53.
pubmed: 20971171
Cho HJ, Park JW, Yoon IS, Kim DD. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. Int J Nanomedicine. 2014;9:495–504.
pubmed: 24531717
pmcid: 3894956
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. Multidisciplinary Digital Publishing Institute. 2018;10:57.
pmcid: 6027495
Liu Y, Zheng Y, Wang A. Response surface methodology for optimizing adsorption process parameters for methylene blue removal by a hydrogel composite. Adsorpt Sci Technol. SAGE Publications Sage UK: London, England. 2010;28:913–22.
Ruiz CC, Hierrezuelo JM, Peula-García JM, Aguiar J. Interaction between n-octyl-b-D-thioglucopyranoside and bovine serum albumin. Open Macromol J. 2008;2:6–18.
Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, et al. Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. J Control Release Elsevier. 1998;50:31–40.
pubmed: 9685870
Wang N, Hsu C, Zhu L, Tseng S, Hsu JP. Influence of metal oxide nanoparticles concentration on their zeta potential. J Colloid Interface Sci. 2013;407:22–8.
pubmed: 23838331
Alshora DH, Ibrahim MA, Elzayat E, Almeanazel OT, Alanazi F. Rosuvastatin calcium nanoparticles: Improving bioavailability by formulation and stabilization codesign. PLoS One. Public Library of Science. 2018;13:e0200218.
pubmed: 29985967
pmcid: 6037357
Malhotra A, Coupland JN. The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates. Food Hydrocoll Elsevier. 2004;18:101–8.
Wang S-R, Chen Y, Wu L-P, Miao W-J, Xiong M-J, Chen C, et al. Development of predictive quantitative retention-activity relationship models of HMG-CoA reductase inhibitors by biopartitioning micellar chromatography. J Pharm Biomed Anal Elsevier. 2008;46:243–9.
pubmed: 18024049
Kakkar S, Kaur IP. Spanlastics—a novel nanovesicular carrier system for ocular delivery. Int J Pharm Elsevier. 2011;413:202–10.
pubmed: 21540093
Van den Bergh BA. Elasticity of vesicles affects hairless mouse skin structure and permeability. J Control Release. 1999;62:367–79.
pubmed: 10528074
Al-mahallawi AM, Khowessah OM, Shoukri RA. Ciprofloxacin-loaded spanlastics for ototopical non-invasive delivery to the middle ear : in-vitro and ex-vivo studies. Inven Rapid NDDS. 2014;3:3–8.
Lawrence MJ. Surfactant systems: their use in drug delivery. Chem Soc Rev. 1994;23:417–24.
Polli JE, Rekhi GS, Augsburger LLSV. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets. J Pharm Sci. 1997;86:690–700.
pubmed: 9188051
Sriamornsak P, Thirawong N, Korkerd K. Swelling, erosion and release behavior of alginate-based matrix tablets. Eur J Pharm Biopharm Elsevier. 2007;66:435–50.
pubmed: 17267187
Martin AN, Sinko PJ, Singh Y. Martin’s physical pharmacy and pharmaceutical sciences: physical chemical and biopharmaceutical principles in the pharmaceutical sciences. Philadelphia: Lippincott Williams & Wilkins; 2011.
Zare-Akbari Z, Farhadnejad H, Furughi-Nia B, Abedin S, Yadollahi M, Khorsand-Ghayeni M. PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. Int J Biol Macromol Elsevier. 2016;93:1317–27.
pubmed: 27702657
Nutan MTH, Reddy IK. General principles of suspensions. In: Kulshreshtha AK, Singh ON, Wall GM, editors. Pharmaceutical Suspensions: From Formulation Development to Manufacturing. New York: Springer; 2009.
Piriyaprasarth S, Sriamornsak P. Flocculating and suspending properties of commercial citrus pectin and pectin extracted from pomelo (Citrus maxima) peel. Carbohyd Polym. 2011;83:561–8.
Verissimo TV, Santos NT, Silva JR, Azevedo RB, Gomes AJ, Lunardi CN. In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Mater Sci Eng C. Elsevier. 2016;65:199–204.
Goldstein AT, Burrows LJ, Belkin ZR, Pfau R, Bremmer M, Goldfinger C, et al. Safety and efficacy of human fibroblast lysate cream for vulvar lichen sclerosus: a randomized placebo-controlled trial. Acta Derm Venereol Medical Journals Limited. 2015;95:847–9.
pubmed: 25634582
Hatahet T, Morille M, Hommoss A, Dorandeu C, Müller RH, Bégu S. Dermal quercetin smartCrystals®: formulation development, antioxidant activity and cellular safety. Eur J Pharm Biopharm. Elsevier. 2016;102:51–63.
pubmed: 26948977
Ibrahim IM, Elsaie ML, Almohsen AM, Mohey-Eddin MH. Effectiveness of topical clove oil on symptomatic treatment of chronic pruritus. J Cosmet Dermatol Wiley Online Library. 2017;16:508–11.
pubmed: 28382655
Shapiro CL, Recht A. Drug therapy - side effects of adjuvant treatment of breast cancer. N Engl J Med. 2001;344:1997–2008.
pubmed: 11430330
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673–92.
pubmed: 27003448
pmcid: 5561790
Perry JL, Reuter KG, Luft JC, Pecot CV, Zamboni W, DeSimone JM. Mediating passive tumor accumulation through particle size, tumor type, and location. Nano Lett. 2017;17:2879–86.
pubmed: 28287740
pmcid: 5708115
Zhang YR, Lin R, Li HJ, He WL, Du JZ, Wang J. Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;11:1–12.
Yan Z, Bao H, Zhang Q, Xu H. Effects of nanoparticle size on antitumor activity of 10-hydroxycamptothecin-conjugated gold nanoparticles: in vitro and in vivo studies. Int J Nanomedicine. 2016;11:929–40.
pubmed: 27022260
pmcid: 4788364
Jiang Q, Wu Y, Zhang H, Liu P, Yao J, Yao P, et al. Development of essential oils as skin permeation enhancers: penetration enhancement effect and mechanism of action. Pharm Biol. Informa Healthcare USA, Inc. 2017;55:1592–600.
pubmed: 28399694
pmcid: 7011944
Hussain A, Brahmbhatt K, Priyani A, Ahmed M, Rizvi T, Sharma C. Eugenol enhances the chemotherapeutic potential of gemcitabine and induces anticarcinogenic and anti-inflammatory activity in human cervical cancer cells. Cancer Biother Radiopharm. 2011;26:519–27.
pubmed: 21939359
Zhao X, Chu E, Liu M, Cheng L, Liao J, Beumer JH, et al. Clove extract inhibits tumor growth and promotes cell cycle arrest and apoptosis. Oncol Res. 2014;21:247–59.
pubmed: 24854101
pmcid: 4132639
Lieleg O, Baumgärtel R, Bausch A. Selective filtering of particles by theextracellular matrix: an electrostatic bandpass. Biophys J. 2009;97:1569–77.
pubmed: 19751661
pmcid: 2749787
Nomura T, Koreeda N, Yamashita F, Takakura Y, Hashida M. Effect of particle sizeand charge on the disposition of lipid carriers after intratumoral injection into tissue-isolated tumors. Pharm Res. 1998;15:128–32.
pubmed: 9487559
Priwitaningrum D, Blonde J, Sridhar A, van Baarlen J, Hennink W, Storm G. Tumor stroma-containing 3D spheroid arrays: A tool to study nanoparticle penetration. J Control Release. 2016;244:257–68.
pubmed: 27616660
Lu H, Utama R, Kitiyotsawat U, Babiuch K, Jiang Y, Stenzel M. Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids. Biomater Sci. 2015;3:1085–95.
pubmed: 26221942
Martin PD, Warwick MJ, Dane AL, Hill SJ, Giles PB, Phillips PJ, et al. Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clin Ther Elsevier. 2003;25:2822–35.
pubmed: 14693307
Cleary GW. Transdermal controlled release systems. Med Appl Control Release. 1984;1:203–51.
Transdermal BB. Drug Delivery. In: Aulton ME, editor. Pharmaceutics: the science of dosage form design: Churchill Livingston; 2002.
Salama HA, Mahmoud AA, Kamel AO, Abdel Hady M, Awad GA. Brain delivery of olanzapine by intranasal administration of transfersomal vesicles. J Liposome Res. 2012;22:336–45.
pubmed: 22881283