Recent strategies for the development of oral medicines for the treatment of visceral leishmaniasis.


Journal

Drug development research
ISSN: 1098-2299
Titre abrégé: Drug Dev Res
Pays: United States
ID NLM: 8204468

Informations de publication

Date de publication:
11 2020
Historique:
received: 01 04 2020
revised: 24 04 2020
accepted: 28 04 2020
pubmed: 13 5 2020
medline: 6 10 2021
entrez: 13 5 2020
Statut: ppublish

Résumé

Considered prevalent in many countries on five continents, especially in low-income regions, leishmaniasis is a neglected tropical disease classified by World Health Organization as one of the diseases for which the development of new treatments is a priority. It is an infectious disease caused by protozoa of the genus Leishmania, whose species may cause different clinical manifestations, such as cutaneous and visceral leishmaniasis (VL). Treatment is exclusively by drug therapy, as it has not been possible to develop vaccines yet. Currently available drugs are not fully effective in all cases; they have parenteral administration and exhibit a number of serious and very common adverse effects. The only oral drug available is expensive and it is not available in many endemic countries. Injectable administration is the main problem of treatments, since it requires patients to go to health centers, hospitalization and professional administration, which are conditions that are not adapted to the reality of the poverty conditions of patients with the disease. In this context, the development of an oral medicine has become a focus as it may solve many of these issues. Based on this scenario, this review aimed to investigate which therapeutic alternatives have been studied for the development of oral drugs directed to the treatment of human VL.

Identifiants

pubmed: 32394440
doi: 10.1002/ddr.21684
doi:

Substances chimiques

Antiprotozoal Agents 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

803-814

Subventions

Organisme : Fundação de Amparo à Ciência e Tecnologia de Pernambuco
Pays : International
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Pays : International

Informations de copyright

© 2020 Wiley Periodicals, Inc.

Références

Afzal, I., Sarwar, H. S., Sohail, M. F., Varikuti, S., Jahan, S., Akhtar, S., … Shahnaz, G. (2019). Mannosylated thiolated paromomycin-loaded PLGA nanoparticles for the oral therapy of visceral leishmaniasis. Nanomedicine, 14(4), 387-406. https://doi.org/10.2217/nnm-2018-0038
Araújo, I. A. C., de Paula, R. C., Alves, C. L., Faria, K. F., de Oliveira, M. M., Mendes, G. G., … da Silva, S. M. (2019). Efficacy of lapachol on treatment of cutaneous and visceral leishmaniasis. Experimental Parasitology, 199, 67-73. https://doi.org/10.1016/j.exppara.2019.02.013
Bates, P. A. (2018, May 1). Revising leishmania's life cycle. Nature Microbiology, 3, 529-530. https://doi.org/10.1038/s41564-018-0154-2
Bhuniya, D., Mukkavilli, R., Shivahare, R., Launay, D., Dere, R. T., Deshpande, A., … Martin, D. (2015). Aminothiazoles: Hit to lead development to identify antileishmanial agents. European Journal of Medicinal Chemistry, 102, 582-593. https://doi.org/10.1016/J.EJMECH.2015.08.013
Braga, S. S. (2019). Multi-target drugs active against leishmaniasis: A paradigm of drug repurposing. European Journal of Medicinal Chemistry, 183, 111660. https://doi.org/10.1016/j.ejmech.2019.111660
Brasil. (2016). NOTA TÉCNICA No 11/2016/CPV/DFIP/SDA/GM/MAPA. Nota Técnica (Vol. 11). Brasília. Retrieved from https://www.sbmt.org.br/portal/wp-content/uploads/2016/09/nota-tecnica.pdf
Burza, S., Croft, S. L., & Boelaert, M. (2018). Leishmaniasis. The Lancet, 392(10151), 951-970. https://doi.org/10.1016/S0140-6736(18)31204-2
Charlton, R. L., Rossi-Bergmann, B., Denny, P. W., & Steel, P. G. (2018). Repurposing as a strategy for the discovery of new anti-leishmanials: The-state-of-the-art. Parasitology, 145(2), 219-236. https://doi.org/10.1017/S0031182017000993
Corpas-López, V., Díaz-Gavilán, M., Franco-Montalbán, F., Merino-Espinosa, G., López-Viota, M., López-Viota, J., … Martín-Sánchez, J. (2018). A nanodelivered Vorinostat derivative is a promising oral compound for the treatment of visceral leishmaniasis. Pharmacological Research, 139, 375-383. https://doi.org/10.1016/j.phrs.2018.11.039
Corpas-Lopez, V., Moniz, S., Thomas, M., Wall, R. J., Torrie, L. S., Zander-Dinse, D., … Wyllie, S. (2018). Pharmacological validation of N-myristoyltransferase as a drug target in Leishmania donovani. ACS Infectious Diseases, 5(1), 111-122. https://doi.org/10.1021/acsinfecdis.8b00226
Corpas-López, V., Morillas-Márquez, F., Navarro-Moll, M. C., Merino-Espinosa, G., Díaz-Sáez, V., & Martín-Sánchez, J. (2015). (−)-α-Bisabolol, a promising oral compound for the treatment of visceral leishmaniasis. Journal of Natural Products, 78(6), 1202-1207. https://doi.org/10.1021/np5008697
Cunha-Júnior, E. F., Martins, T. M., Canto-Cavalheiro, M. M., Marques, P. R., Portari, E. A., Coelho, M. G. P., … Torres-Santos, E. C. (2016). Preclinical studies evaluating subacute toxicity and therapeutic efficacy of LQB-118 in experimental visceral leishmaniasis. Antimicrobial Agents and Chemotherapy, 60(6), 3794-3801. https://doi.org/10.1128/AAC.01787-15
Das, S., Ghosh, S., De, A. K., & Bera, T. (2017). Oral delivery of ursolic acid-loaded nanostructured lipid carrier coated with chitosan oligosaccharides: Development, characterization, in vitro and in vivo assessment for the therapy of leishmaniasis. International Journal of Biological Macromolecules, 102, 996-1008. https://doi.org/10.1016/J.IJBIOMAC.2017.04.098
de Morais-Teixeira, E., Rabello, A., & Aguiar, M. M. G. (2019). In vitro activity and in vivo efficacy of fexinidazole against new world leishmania species. Journal of Antimicrobial Chemotherapy, 74, 2318-2325. https://doi.org/10.1093/jac/dkz172
de Souza, M. L., Oliveira, D. D., Pereira, N. D. P., & Soares, D. M. (2018). Nanoemulsions and dermatological diseases: Contributions and therapeutic advances. International Journal of Dermatology, 57(8), 894-900. https://doi.org/10.1111/ijd.14028
Dey, S., Mukherjee, D., Chakraborty, S., Mallick, S., Dutta, A., Ghosh, J., … Pal, C. (2015). Protective effect of Croton caudatus Geisel leaf extract against experimental visceral leishmaniasis induces proinflammatory cytokines in vitro and in vivo. Experimental Parasitology, 151-152, 84-95. https://doi.org/10.1016/J.EXPPARA.2015.01.012
DNDi. (2018). Disease factsheet: Leishmaniasis. Geneva. Retrieved from https://www.dndi.org/wp-content/uploads/2018/12/Factsheet2018_Leishmaniasis.pdf
Fortin, A., Dorlo, T. P. C., Hendrickx, S., & Maes, L. (2016). Pharmacokinetics and pharmacodynamics of oleylphosphocholine in a hamster model of visceral leishmaniasis. Journal of Antimicrobial Chemotherapy, 71(7), 1892-1898. https://doi.org/10.1093/jac/dkw089
Freitas-Junior, L. H., Chatelain, E., Kim, H. A., & Siqueira-Neto, J. L. (2012). Visceral leishmaniasis treatment: What do we have, what do we need and how to deliver it? International Journal for Parasitology: Drugs and Drug Resistance, 2, 11-19. https://doi.org/10.1016/J.IJPDDR.2012.01.003
Garcia Neto, F. (2020). Processo no 25351.939196/2019-93. Brasília.
Ghorbani, M., & Farhoudi, R. (2018). Leishmaniasis in humans: Drug or vaccine therapy? Drug Design, Development and Therapy, 12, 25-40. https://doi.org/10.2147/DDDT.S146521
Gupta, S., Yardley, V., Vishwakarma, P., Shivahare, R., Sharma, B., Launay, D., … Puri, S. K. (2015). Nitroimidazo-oxazole compound DNDI-VL-2098: An orally effective preclinical drug candidate for the treatment of visceral leishmaniasis. Journal of Antimicrobial Chemotherapy, 70(2), 518-527. https://doi.org/10.1093/jac/dku422
Islamuddin, M., Chouhan, G., Farooque, A., Dwarakanath, B. S., Sahal, D., & Afrin, F. (2015). Th1-biased immunomodulation and therapeutic potential of Artemisia annua in murine visceral leishmaniasis. PLoS Neglected Tropical Diseases, 9(1), e3321. https://doi.org/10.1371/journal.pntd.0003321
Joice, A. C., Yang, S., Farahat, A. A., Meeds, H., Feng, M., Li, J., … Werbovetz, K. A. (2018). Antileishmanial efficacy and pharmacokinetics of DB766-azole combinations. Antimicrobial Agents and Chemotherapy, 62(1), e01129-17. https://doi.org/10.1128/AAC.01129-17
Kar, N., Chakraborty, S., De, A. K., Ghosh, S., & Bera, T. (2017). Development and evaluation of a cedrol-loaded nanostructured lipid carrier system for in vitro and in vivo susceptibilities of wild and drug resistant Leishmania donovani amastigotes. European Journal of Pharmaceutical Sciences, 104, 196-211. https://doi.org/10.1016/J.EJPS.2017.03.046
Kato, K. C., de Morais-Teixeira, E., Islam, A., Leite, M. F., Demicheli, C., de Castro, W. V., … Frézard, F. (2018a). Efficacy of meglumine antimoniate under low polymerization state orally administrated in murine model of visceral leishmaniasis. Antimicrobial Agents and Chemotherapy, 62(8), e00539-e00518. https://doi.org/10.1128/aac.00539-18
Kato, K. C., de Morais-Teixeira, E., Islam, A., Leite, M. F., Demicheli, C., de Castro, W. V., … Frézard, F. (2018b). Efficacy of meglumine Antimoniate in a low polymerization state orally administered in a murine model of visceral leishmaniasis. Antimicrobial Agents and Chemotherapy, 62(8), e00539-e00518. https://doi.org/10.1128/AAC.00539-18
Kaur, R., & Kaur, S. (2018). Protective efficacy of Chlorophytum borivilianum root extract against murine visceral leishmaniasis by immunomodulating the host responses. Journal of Ayurveda and Integrative Medicine, 11, 53-61. https://doi.org/10.1016/J.JAIM.2017.10.009
Kedzierski, L., & Evans, K. J. (2014). Immune responses during cutaneous and visceral leishmaniasis. Parasitology, 141(12), 1544-1562. https://doi.org/10.1017/S003118201400095X
Kumar, R., Sahoo, C., Pandey, K., Das, V. N. R., Topno, R. K., Ansari, Y., … Das, P. (2016). Development of PLGA-PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Materials Science and Engineering C, 59, 748-753. https://doi.org/10.1016/j.msec.2015.10.083
Lepesheva, G. I., Hargrove, T. Y., Rachakonda, G., Wawrzak, Z., Pomel, S., Cojean, S., … Villalta, F. (2015). VFV as a new effective CYP51 structure-derived drug candidate for Chagas disease and visceral leishmaniasis. Journal of Infectious Diseases, 212(9), 1439-1448. https://doi.org/10.1093/infdis/jiv228
McConville, M. J. (2016). Metabolic crosstalk between leishmania and the macrophage host. Trends in Parasitology, 32, 666-668. https://doi.org/10.1016/j.pt.2016.05.005
McConville, M. J., & Naderer, T. (2011). Metabolic pathways required for the intracellular survival of Leishmania. Annual Review of Microbiology, 65(1), 543-561. https://doi.org/10.1146/annurev-micro-090110-102913
Moraes, A. R., Tavares, G. D., Soares Rocha, F. J., de Paula, E., & Giorgio, S. (2018). Effects of nanoemulsions prepared with essential oils of copaiba- and andiroba against Leishmania infantum and Leishmania amazonensis infections. Experimental Parasitology, 187, 12-21. https://doi.org/10.1016/j.exppara.2018.03.005
Moreno, M. A., Alonso, A., Alcolea, P. J., Abramov, A., de Lacoba, M. G., Abendroth, J., … Larraga, V. (2014). Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate. International Journal for Parasitology: Drugs and Drug Resistance, 4(3), 347-354. https://doi.org/10.1016/j.ijpddr.2014.06.001
Mukkavilli, R., Pinjari, J., Patel, B., Sengottuvelan, S., Mondal, S., Gadekar, A., … Martin, D. (2014). In vitro metabolism, disposition, preclinical pharmacokinetics and prediction of human pharmacokinetics of DNDI-VL-2098, a potential oral treatment for visceral leishmaniasis. European Journal of Pharmaceutical Sciences, 65, 147-155. https://doi.org/10.1016/J.EJPS.2014.09.006
Naderer, T., & McConville, M. J. (2011). Intracellular growth and pathogenesis of Leishmania parasites. Essays in Biochemistry, 51(1), 81-95. https://doi.org/10.1042/BSE0510081
Nandan, D., Zhang, N., Yu, Y., Id, B. S., Chen, S., Kima, P. E., & Id, N. E. R. (2018). Selective AKT inhibitor is effective against Leishmania. PLoS One, 13(11), e0206920.
Paik, D., Das, P., Naskar, K., Pramanik, K., & Chakraborti, T. (2016). Protective inflammatory response against visceral leishmaniasis with potato tuber extract: A new approach of successful therapy. Biomédecine & Pharmacothérapie, 83, 1295-1302. https://doi.org/10.1016/j.biopha.2016.08.046
Patterson, S., Wyllie, S., Norval, S., Stojanovski, L., Simeons, F. R., Auer, J. L., … Fairlamb, A. H. (2016). The anti-tubercular drug delamanid as a potential oral treatment for visceral leishmaniasis. eLife, 5, e09744. https://doi.org/10.7554/eLife.09744
Pinto, E. G., & Tempone, A. G. (2018). Activity of the antiarrhythmic drug amiodarone against Leishmania (L.) infantum: An in vitro and in vivo approach. Journal of Venomous Animals and Toxins Including Tropical Diseases, 24(1), 29. https://doi.org/10.1186/s40409-018-0166-7
Ponte-Sucre, A., Gamarro, F., Dujardin, J.-C., Barrett, M. P., López-Vélez, R., García-Hernández, R., … Papadopoulou, B. (2017). Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Neglected Tropical Diseases, 11(12), e0006052. https://doi.org/10.1371/journal.pntd.0006052
Pramanik, A., Paik, D., Pramanik, P. K., & Chakraborti, T. (2019). Serine protease inhibitors rich Coccinia grandis (L.) Voigt leaf extract induces protective immune responses in murine visceral leishmaniasis. Biomedicine & Pharmacotherapy, 111, 224-235. https://doi.org/10.1016/j.biopha.2018.12.053
Rossi, M., & Fasel, N. (2018). How to master the host immune system? Leishmania parasites have the solutions! International Immunology, 30(3), 103-111. https://doi.org/10.1093/intimm/dxx075
Sarwar, H. S., Sohail, M. F., Saljoughian, N., Rehman, A. U., Akhtar, S., Nadhman, A., … Shahnaz, G. (2018). Design of mannosylated oral amphotericin B nanoformulation: Efficacy and safety in visceral leishmaniasis. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1-11. https://doi.org/10.1080/21691401.2018.1430699
Séguin, O., & Descoteaux, A. (2016). Leishmania, the phagosome, and host responses: The journey of a parasite. Cellular Immunology, 309, 1-6. https://doi.org/10.1016/j.cellimm.2016.08.004
Shahnaz, G., Edagwa, B. J., McMillan, J., Akhtar, S., Raza, A., Qureshi, N. A., … Gendelman, H. E. (2017). Development of mannose-anchored thiolated amphotericin B nanocarriers for treatment of visceral leishmaniasis. Nanomedicine, 12(2), 99-115. https://doi.org/10.2217/nnm-2016-0325
Sharlow, E. R., Grögl, M., Johnson, J., Lazo, J. S. (2010). Anti-leishmanial drug discovery: rising to the challenges of a highly neglected disease. Mol. Interv. 10, 72-75. https://doi.org/10.1124/mi.10.2.4
Smith, L., Serrano, D. R., Mauger, M., Bolás-Fernández, F., Dea-Ayuela, M. A., & Lalatsa, A. (2018). Orally bioavailable and effective buparvaquone lipid-based nanomedicines for visceral leishmaniasis. Molecular Pharmaceutics, 15(7), 2570-2583. https://doi.org/10.1021/acs.molpharmaceut.8b00097
Sousa-Batista, A., de Philipon, C. I. M. S., de Souza Albernaz, M., Pinto, S. R., Rossi-Bergmann, B., & Santos-Oliveira, R. (2018). New chalcone compound as a promising antileishmanial drug for an old neglected disease: Biological evaluation using radiolabelled biodistribution. Journal of Global Antimicrobial Resistance, 13, 139-142. https://doi.org/10.1016/J.JGAR.2017.11.012
Sousa-Batista, A. J., Escrivani-Oliveira, D., Falcão, C. A. B., Philipon, C. I. M. D. S., & Rossi-Bergmann, B. (2018). Broad spectrum and safety of oral treatment with a promising nitrosylated chalcone in murine leishmaniasis. Antimicrobial Agents and Chemotherapy, 62(10), e00792-e00718. https://doi.org/10.1128/AAC.00792-18
Sunyoto, T., Potet, J., & Boelaert, M. (2018). Why miltefosine-A life-saving drug for leishmaniasis-Is unavailable to people who need it the most. BMJ Global Health, 3(3), e000709. https://doi.org/10.1136/bmjgh-2018-000709
Thompson, A. M., O'Connor, P. D., Marshall, A. J., Yardley, V., Maes, L., Gupta, S., … Denny, W. A. (2017). 7-substituted 2-nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazines: Novel antitubercular agents lead to a new preclinical candidate for visceral leishmaniasis. Journal of Medicinal Chemistry, 60(10), 4212-4233. https://doi.org/10.1021/acs.jmedchem.7b00034
Tiwari, B., Pahuja, R., Kumar, P., Rath, S. K., Gupta, K. C., & Goyal, N. (2017). Nanotized curcumin and miltefosine, a potential combination for treatment of experimental visceral leishmaniasis. Antimicrobial Agents and Chemotherapy, 61(3), e01169-16. https://doi.org/10.1128/AAC.01169-16
Varikuti, S., Volpedo, G., Saljoughian, N., Hamza, O. M., Halsey, G., Ryan, N. M., … Satoskar, A. R. (2019). The potent ITK/BTK inhibitor ibrutinib is effective for the treatment of experimental visceral leishmaniasis caused by Leishmania donovani. The Journal of Infectious Diseases, 219(4), 599-608. https://doi.org/10.1093/infdis/jiy552
WHO | Leishmaniasis. (2018). Retrieved from https://www.who.int/leishmaniasis/en/
World Health Organization. (2010). Control of the leishmaniases. Geneva. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/44412/WHO_TRS_949_eng.pdf?sequence=1
Wyllie, S., Brand, S., Thomas, M., De Rycker, M., Chung, C.-W., Pena, I., … Wyatt, P. G. (2019). Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proceedings of the National Academy of Sciences of the United States of America, 116(19), 9318-9323. https://doi.org/10.1073/pnas.1820175116
Zhu, X., Farahat, A. A., Mattamana, M., Joice, A., Pandharkar, T., Holt, E., … Werbovetz, K. A. (2016). Synthesis and pharmacological evaluation of mono-arylimidamides as antileishmanial agents. Bioorganic & Medicinal Chemistry Letters, 26(10), 2551-2556. https://doi.org/10.1016/j.bmcl.2016.03.082

Auteurs

Myla Lôbo de Souza (ML)

Laboratory of Technology of Medicines, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil.

Lucas Amadeu Gonzaga da Costa (LA)

Laboratory of Technology of Medicines, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil.

Emerson de Oliveira Silva (EO)

Laboratory of Technology of Medicines, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil.

André Luiz Moreira Domingues de Sousa (ALMD)

Laboratory of Technology of Medicines, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil.

Widson Michael Dos Santos (WM)

Laboratory of Technology of Medicines, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil.

Pedro José Rolim Neto (PJ)

Laboratory of Technology of Medicines, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH