PSIXAS: A Psi4 plugin for efficient simulations of X-ray absorption spectra based on the transition-potential and Δ-Kohn-Sham method.

X-ray absorption X-ray absorption spectroscopy transition-potential method Δ-Kohn-Sham

Journal

Journal of computational chemistry
ISSN: 1096-987X
Titre abrégé: J Comput Chem
Pays: United States
ID NLM: 9878362

Informations de publication

Date de publication:
15 07 2020
Historique:
received: 21 02 2020
revised: 21 04 2020
accepted: 21 04 2020
pubmed: 13 5 2020
medline: 13 5 2020
entrez: 13 5 2020
Statut: ppublish

Résumé

Near edge X-ray absorption fine structure (NEXAFS) spectra and their pump-probe extension (PP-NEXAFS) offer insights into valence- and core-excited states. We present PSIXAS, a recent implementation for simulating NEXAFS and PP-NEXAFS spectra by means of the transition-potential and the Δ-Kohn-Sham method. The approach is implemented in form of a software plugin for the Psi4 code, which provides access to a wide selection of basis sets as well as density functionals. We briefly outline the theoretical foundation and the key aspects of the plugin. Then, we use the plugin to simulate PP-NEXAFS spectra of thymine, a system already investigated by others and us. It is found that larger, extended basis sets are needed to obtain more accurate absolute resonance positions. We further demonstrate that, in contrast to ordinary NEXAFS simulations, where the choice of the density functional plays a minor role for the shape of the spectrum, for PP-NEXAFS simulations the choice of the density functional is important. Especially hybrid functionals (which could not be used straightforwardly before to simulate PP-NEXAFS spectra) and their amount of "Hartree-Fock like" exact exchange affects relative resonance positions in the spectrum.

Identifiants

pubmed: 32394459
doi: 10.1002/jcc.26219
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1781-1789

Informations de copyright

© 2020 Wiley Periodicals, Inc.

Références

J. Stöhr, NEXAFS Spectroscopy, Springer, Berlin, Heidelberg 1992.
L. X. Chen, X-ray Absorption and X-Ray Emission Spectroscopy, John Wiley & Sons, 2016, p. 213. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118844243
L. X. Chen, Angew. Chem. Int. Ed. 2004, 43, 2886.
C. Bressler, M. Chergui, Chem. Rev. 2004, 104, 1781.
L. Young, K. Ueda, M. Gühr, P. H. Bucksbaum, M. Simon, S. Mukamel, N. Rohringer, K. C. Prince, C. Masciovecchio, M. Meyer, A. Rudenko, D. Rolles, C. Bostedt, M. Fuchs, D. A. Reis, R. Santra, H. Kapteyn, M. Murnane, H. Ibrahim, F. Légaré, M. Vrakking, M. Isinger, D. Kroon, M. Gisselbrecht, A. L'Huillier, H. J. Wörner, S. R. Leone, J. Phys. B: At. Mol. Opt. Phys. 2018, 51, 032003.
P. Norman, A. Dreuw, Chem. Rev. 2018, 118, 7208.
M. Nooijen, R. J. Bartlett, J. Chem. Phys. 1995, 102, 6735.
B. Peng, P. J. Lestrange, J. J. Goings, M. Caricato, X. Li, J. Chem. Theory Comput. 2015, 11, 4146 PMID: 26575909.
M. L. Vidal, X. Feng, E. Epifanovsky, A. I. Krylov, S. Coriani, J. Chem. Theory Comput. 2019, 15, 3117.
S. Coriani, H. Koch, J. Chem. Phys. 2015, 143, 181103.
S. Coriani, O. Christiansen, T. Fransson, P. Norman, Phys. Rev. A 2012, 85, 022507.
R. H. Myhre, S. Coriani, H. Koch, J. Chem. Theory Comput. 2016, 12, 2633.
J. Liu, D. Matthews, S. Coriani, L. Cheng, J. Chem. Theory Comput. 2019, 15, 1642.
T. J. A. Wolf, R. H. Myhre, J. P. Cryan, S. Coriani, R. J. Squibb, A. Battistoni, N. Berrah, C. Bostedt, P. Bucksbaum, G. Coslovich, R. Feifel, K. J. Gaffney, J. Grilj, T. J. Martinez, S. Miyabe, S. P. Moeller, M. Mucke, A. Natan, R. Obaid, T. Osipov, O. Plekan, S. Wang, H. Koch, M. Gühr, Nat. Commun. 2017, 8, 29.
K. Ueda, M. Hoshino, T. Tanaka, M. Kitajima, H. Tanaka, A. D. Fanis, Y. Tamenori, M. Ehara, F. Oyagi, K. Kuramoto, H. Nakatsuji, Phys. Rev. Lett. 2005, 94, 243004.
T. Tanaka, K. Ueda, R. Feifel, L. Karlsson, H. Tanaka, M. Hoshino, M. Kitajima, M. Ehara, R. Fukuda, R. Tamaki, H. Nakatsuji, Chem. Phys. Lett. 2007, 435, 182.
C. Ehlert, T. J. Klamroth, Comput. Chem. 2016, 38, 116.
K. J. Oosterbaan, A. F. White, M. Head-Gordon, J. Chem. Phys. 2018, 149, 044116.
K. J. Oosterbaan, A. F. White, M. Head-Gordon, J. Chem. Theory Comput. 2019, 15, 2966.
K. J. Oosterbaan, A. F. White, D. Hait, M. Head-Gordon, Phys. Chem. Chem. Phys. 2020, 22, 8182.
G. Fronzoni, P. Decleva, Chem. Phys. 1998, 237, 21.
G. Fronzoni, M. Stener, P. Decleva, Phys. Chem. Chem. Phys. 1999, 1, 1405.
A. Barth, J. Schirmer, J. Phys. B: At. Mol. Phys. 1985, 18, 867.
A. Trofimov, T. Moskovskaya, E. Gromov, N. Vitkovskaya, J. Schirmer, J. Struct. Chem. 2000, 41, 483.
J. Wenzel, M. Wormit, A. Dreuw, J. Comput. Chem. 2014, 35, 1900.
J. Wenzel, A. Holzer, M. Wormit, A. Dreuw, J. Chem. Phys. 2015, 142, 214104.
O. Plekan, V. Feyer, R. Richter, M. Coreno, M. de Simone, K. Prince, A. Trofimov, E. Gromov, I. Zaytseva, J. Schirmer, Chem. Phys. 2008, 347, 360.
J. Wenzel, M. Wormit, A. Dreuw, J. Chem. Theory Comput. 2014, 10, 4583.
A. R. Attar, A. Bhattacherjee, C. D. Pemmaraju, K. Schnorr, K. D. Closser, D. Prendergast, S. R. Leone, Science 2017, 356, 54.
N. A. Besley, J. Chem. Theory Comput. 2016, 12, 5018.
M. W. Buckley, N. A. Besley, Chem. Phys. Lett. 2011, 501, 540.
N. A. Besley, F. A. Asmuruf, Phys. Chem. Chem. Phys. 2010, 12, 12024.
L. Triguero, L. G. M. Pettersson, H. Ågren, Phys. Rev. B 1998, 58, 8097.
M. Leetmaa, M. Ljungberg, A. Lyubartsev, A. Nilsson, L. Pettersson, J. Electron Spectrosc. Relat. Phenom. 2010, 177, 135.
C. Ehlert, M. Holzweber, A. Lippitz, W. E. S. Unger, P. Saalfrank, Phys. Chem. Chem. Phys. 2016, 18, 8654.
C. Ehlert, W. E. S. Unger, P. Saalfrank, Phys. Chem. Chem. Phys. 2014, 16, 14083.
I. Zhovtobriukh, P. Norman, L. G. M. Pettersson, J. Chem. Phys. 2019, 150, 034501.
J. D. Smith, C. D. Cappa, B. M. Messer, W. S. Drisdell, R. C. Cohen, R. J. Saykally, J. Phys. Chem. B 2006, 110, 20038.
C. Ehlert, M. Gühr, P. Saalfrank, J. Chem. Phys. 2018, 149, 144112.
R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince, E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. D. Remigio, R. M. Richard, J. F. Gonthier, A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard, P. Verma, H. F. Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M. Turney, T. D. Crawford, C. D. Sherrill, J. Chem. Theory Comput. 2017, 13, 3185.
J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A. Evangelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L. Abrams, N. J. Russ, M. L. Leininger, C. L. Janssen, E. T. Seidl, W. D. Allen, H. F. Schaefer, R. A. King, E. F. Valeev, C. D. Sherrill, T. D. Crawford, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 2, 556.
J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2013, 4, 15.
K. Hermann; L. Pettersson, M. Casida, C. Daul, A. Goursot, A. Koester, E. Proynov, A. St-Amant, D. Salahub, StoBe-deMon, version 3.3, 2014.
J. Lehtola, M. Hakala, A. Sakko, K. Hämäläinen, J. Comput. Chem. 2012, 33, 1572.
D. G. A. Smith, L. A. Burns, D. A. Sirianni, D. R. Nascimento, A. Kumar, A. M. James, J. B. Schriber, T. Zhang, B. Zhang, A. S. Abbott, E. J. Berquist, M. H. Lechner, L. A. Cunha, A. G. Heide, J. M. Waldrop, T. Y. Takeshita, A. Alenaizan, D. Neuhauser, R. A. King, A. C. Simmonett, J. M. Turney, H. F. Schaefer, F. A. Evangelista, A. E. DePrince, T. D. Crawford, K. Patkowski, C. D. Sherrill, J. Chem. Theory Comput. 2018, 14, 3504.
P. Pulay, Chem. Phys. Lett. 1980, 73, 393.
X. Hu, W. Yang, J. Chem. Phys. 2010, 132, 054109.
F. Weigend, Phys. Chem. Chem. Phys. 2002, 4, 4285.
G. Schaftenaar, J. Noordik, J. Comput. Aided Mol. Des. 2000, 14, 123.
S. van der Walt, S. C. Colbert, G. Varoquaux, Comput. Sci. Eng. 2011, 13, 22.
J. Pipek, P. G. Mezey, J. Chem. Phys. 1989, 90, 4916.
A. T. B. Gilbert, N. A. Besley, P. M. W. Gill, J. Phys. Chem. A 2008, 112, 13164.
G. M. J. Barca, A. T. B. Gilbert, P. M. W. Gill, J. Chem. Theory Comput. 2018, 14, 1501.
V. R. Saunders, I. H. Hillier, Int. J. Quant. Chem. 1973, 7, 699.
H. Ågren, V. Carravetta, O. Vahtras, L. G. Pettersson, Chem. Phys. Lett. 1994, 222, 75.
H. Ågren, V. Carravetta, O. Vahtras, L. G. Pettersson, Theor. Chem. Acc. 1997, 97, 14.
L. Triguero, O. Plashkevych, L. Pettersson, H. Ågren, J. Electron Spectrosc. Relat. Phenom. 1999, 104, 195.
A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
G. Zhang, C. B. Musgrave, J. Phys. Chem. A 2007, 111, 1554.
S. Lehtola, C. Steigemann, M. J. Oliveira, M. A. Marques, SoftwareX 2018, 7, 1.
M. A. Marques, M. J. Oliveira, T. Burnus, Comput. Phys. Commun. 2012, 183, 2272.
T. Stein, L. Kronik, R. Baer, J. Am. Chem. Soc. 2009, 131, 2818.
D. Hait, M. Head-Gordon, J. Phys. Chem. Lett. 2020, 11, 775.
D. Hait, M. Head-Gordon, J. Chem. Theory Comput. 2020, 16, 1699.

Auteurs

Christopher Ehlert (C)

Heidelberg Institute for Theoretical Studies (HITS gGmbH), Heidelberg, Germany.
Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.

Tillmann Klamroth (T)

Institut für Chemie, Universität Potsdam, Potsdam-Golm, Germany.

Classifications MeSH