Stored RBC metabolism as a function of caffeine levels.
Journal
Transfusion
ISSN: 1537-2995
Titre abrégé: Transfusion
Pays: United States
ID NLM: 0417360
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
13
01
2020
revised:
04
03
2020
accepted:
11
03
2020
pubmed:
13
5
2020
medline:
22
6
2021
entrez:
13
5
2020
Statut:
ppublish
Résumé
Coffee consumption is extremely common in the United States. Coffee is rich with caffeine, a psychoactive, purinergic antagonist of adenosine receptors, which regulate red blood cell energy and redox metabolism. Since red blood cell (purine) metabolism is a critical component to the red cell storage lesion, here we set out to investigate whether caffeine levels correlated with alterations of energy and redox metabolism in stored red blood cells. We measured the levels of caffeine and its main metabolites in 599 samples from the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study via ultra-high-pressure-liquid chromatography coupled to high-resolution mass spectrometry and correlated them to global metabolomic and lipidomic analyses of RBCs stored for 10, 23, and 42 days. Caffeine levels positively correlated with increased levels of the main red cell antioxidant, glutathione, and its metabolic intermediates in glutathione-dependent detoxification pathways of oxidized lipids and sugar aldehydes. Caffeine levels were positively correlated with transamination products and substrates, tryptophan, and indole metabolites. Expectedly, since caffeine and its metabolites belong to the family of xanthine purines, all xanthine metabolites were significantly increased in the subjects with the highest levels of caffeine. However, high-energy phosphate compounds ATP and DPG were not affected by caffeine levels, despite decreases in glucose oxidation products-both via glycolysis and the pentose phosphate pathway. Though preliminary, this study is suggestive of a beneficial correlation between the caffeine levels and improved antioxidant capacity of stored red cells.
Sections du résumé
BACKGROUND
Coffee consumption is extremely common in the United States. Coffee is rich with caffeine, a psychoactive, purinergic antagonist of adenosine receptors, which regulate red blood cell energy and redox metabolism. Since red blood cell (purine) metabolism is a critical component to the red cell storage lesion, here we set out to investigate whether caffeine levels correlated with alterations of energy and redox metabolism in stored red blood cells.
STUDY DESIGN AND METHODS
We measured the levels of caffeine and its main metabolites in 599 samples from the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study via ultra-high-pressure-liquid chromatography coupled to high-resolution mass spectrometry and correlated them to global metabolomic and lipidomic analyses of RBCs stored for 10, 23, and 42 days.
RESULTS
Caffeine levels positively correlated with increased levels of the main red cell antioxidant, glutathione, and its metabolic intermediates in glutathione-dependent detoxification pathways of oxidized lipids and sugar aldehydes. Caffeine levels were positively correlated with transamination products and substrates, tryptophan, and indole metabolites. Expectedly, since caffeine and its metabolites belong to the family of xanthine purines, all xanthine metabolites were significantly increased in the subjects with the highest levels of caffeine. However, high-energy phosphate compounds ATP and DPG were not affected by caffeine levels, despite decreases in glucose oxidation products-both via glycolysis and the pentose phosphate pathway.
CONCLUSION
Though preliminary, this study is suggestive of a beneficial correlation between the caffeine levels and improved antioxidant capacity of stored red cells.
Identifiants
pubmed: 32394461
doi: 10.1111/trf.15813
pmc: PMC7990510
mid: NIHMS1676432
doi:
Substances chimiques
Coffee
0
Xanthine
1AVZ07U9S7
Caffeine
3G6A5W338E
Types de publication
Clinical Trial
Journal Article
Multicenter Study
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1197-1211Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL146442
Pays : United States
Organisme : NHLBI NIH HHS
ID : RM1GM131968
Pays : United States
Organisme : NIGMS NIH HHS
ID : RM1 GM131968
Pays : United States
Organisme : NIGMS NIH HHS
ID : RM1GM131968
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01HL146442
Pays : United States
Organisme : NIH HHS
ID : S10 OD021641
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN2682011
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01HL148151
Pays : United States
Organisme : NHLBI NIH HHS
ID : R21 HL150032
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL149714
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL148151
Pays : United States
Organisme : NHLBI NIH HHS
ID : S10OD021641
Pays : United States
Informations de copyright
© 2020 AABB.
Références
Transfusion. 2019 Jul;59(7):2264-2275
pubmed: 31002399
Ann Intern Med. 2008 Jun 17;148(12):904-14
pubmed: 18559841
Am J Clin Nutr. 1989 Jan;49(1):44-50
pubmed: 2912010
Nat Commun. 2019 Oct 18;10(1):4766
pubmed: 31628327
Nucleic Acids Res. 2018 Jul 2;46(W1):W486-W494
pubmed: 29762782
Transfusion. 2015 Jun;55(6):1178-85
pubmed: 25644965
Methods Mol Biol. 2019;1978:121-135
pubmed: 31119660
Methods Mol Biol. 2019;1978:13-26
pubmed: 31119654
Blood Transfus. 2017 Oct;15(6):535-542
pubmed: 28488967
Transfusion. 2008 Jun;48(6):1053-60
pubmed: 18298603
Transfusion. 2019 Jan;59(1):89-100
pubmed: 30353560
J Neurosci. 2001 May 15;21(10):RC143
pubmed: 11319241
Haematologica. 2012 Jan;97(1):107-15
pubmed: 21993682
Nutrients. 2019 Jun 14;11(6):
pubmed: 31207887
Free Radic Biol Med. 2016 Jul;96:152-65
pubmed: 27094493
Free Radic Biol Med. 2000 Oct 1;29(7):642-51
pubmed: 11033416
Blood. 2016 Sep 29;128(13):e43-50
pubmed: 27554084
Blood Adv. 2017 Jun 27;1(15):1132-1141
pubmed: 29034365
Transfusion. 2019 Nov;59(11):3362-3370
pubmed: 31602669
Blood Transfus. 2019 Jan;17(1):27-52
pubmed: 30653459
Transfusion. 2015 Jan;55(1):205-19
pubmed: 25130459
Transfusion. 2015 Jun;55(6):1155-68
pubmed: 25556331
Biochemistry. 1987 Jan 13;26(1):52-9
pubmed: 3828308
Transfusion. 2017 Feb;57(2):325-336
pubmed: 27813142
Int J Physiol Pathophysiol Pharmacol. 2013;5(1):21-31
pubmed: 23525514
Sci Rep. 2017 Nov 10;7(1):15281
pubmed: 29127281
Transfusion. 2016 Apr;56(4):980-93
pubmed: 26662506
Haematologica. 2016 May;101(5):578-86
pubmed: 26921359
J Clin Invest. 2020 May 1;130(5):2270-2285
pubmed: 31961822
J Biomol NMR. 2011 Apr;49(3-4):221-9
pubmed: 21380856
Arch Intern Med. 2011 Sep 26;171(17):1571-8
pubmed: 21949167
Transfusion. 2016 Oct;56(10):2560-2570
pubmed: 27514704
Ann Hum Biol. 2013 Nov-Dec;40(6):463-71
pubmed: 23829164
J Clin Invest. 1955 Oct;34(10):1509-12
pubmed: 13263430
Blood Transfus. 2015 Dec 11;14(6):555-556
pubmed: 26674829
Nat Commun. 2017 Feb 07;8:14108
pubmed: 28169986
Transfusion. 2018 Aug;58(8):1992-2002
pubmed: 29624679
Neuropsychobiology. 1993;27(4):217-23
pubmed: 8232842
Rapid Commun Mass Spectrom. 2017 Apr 30;31(8):663-673
pubmed: 28195377
Nat Commun. 2016 Jul 15;7:12086
pubmed: 27417539
J Sport Health Sci. 2020 Dec;9(6):595-603
pubmed: 33308809
Pharmacol Toxicol. 1995 Feb;76(2):93-101
pubmed: 7746802
Transfusion. 2019 Aug;59(8):2537-2543
pubmed: 31074905
Am J Epidemiol. 2004 Nov 15;160(10):977-84
pubmed: 15522854
Nucleic Acids Res. 2018 Jul 2;46(W1):W514-W522
pubmed: 29878180
Psychopharmacology (Berl). 2000 Apr;149(3):203-16
pubmed: 10823400
Blood Transfus. 2019 Jul;17(4):258-262
pubmed: 31184580
J Nutr. 2004 Mar;134(3):562-7
pubmed: 14988447
Arch Intern Med. 2006 Jun 12;166(11):1190-5
pubmed: 16772246
Int J Vasc Med. 2010;2010:834060
pubmed: 21188209
Amino Acids. 2012 Jun;42(6):2223-32
pubmed: 21691752
Circulation. 2016 Aug 2;134(5):405-21
pubmed: 27482003
Vox Sang. 2017 May;112(4):326-335
pubmed: 28370161
Front Mol Biosci. 2015 Oct 28;2:60
pubmed: 26579528
Blood Adv. 2019 Aug 13;3(15):2272-2285
pubmed: 31350307
J Proteome Res. 2016 Oct 7;15(10):3883-3895
pubmed: 27646145
Eur J Neurol. 2002 Jul;9(4):377-82
pubmed: 12099922
Transfusion. 2019 Jan;59(1):57-66
pubmed: 30566231
Transfusion. 2020 Jun;60(6):1212-1226
pubmed: 32339326
Alcohol Alcohol. 2017 Jan;52(1):29-34
pubmed: 27998921
Diabetologia. 2009 Dec;52(12):2561-9
pubmed: 19727658
Transfusion. 2018 Dec;58(12):2978-2991
pubmed: 30312994
Transfusion. 2019 Jan;59(1):79-88
pubmed: 30408207
Transfusion. 2019 Jan;59(1):46-56
pubmed: 30267427
Transfusion. 2020 Jun;60(6):1160-1174
pubmed: 32385854
NPJ Biofilms Microbiomes. 2019 Sep 24;5(1):26
pubmed: 31583109
Biochimie. 2012 Feb;94(2):393-402
pubmed: 21856371
Blood Transfus. 2014 Jul;12(3):376-87
pubmed: 25074788
Transfusion. 2020 Apr;60(4):786-798
pubmed: 32104927
Neuroscience. 1994 Aug;61(3):603-12
pubmed: 7969932
Haematologica. 2018 Feb;103(2):361-372
pubmed: 29079593
Blood Transfus. 2017 Mar;15(2):112-115
pubmed: 28263167