Cu
TEMPO
asymmetric catalysis
copper
electrocatalysis
oxidative cross-coupling
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
24 Aug 2020
24 Aug 2020
Historique:
received:
08
04
2020
pubmed:
13
5
2020
medline:
13
5
2020
entrez:
13
5
2020
Statut:
ppublish
Résumé
A novel strategy for asymmetric Shono-type oxidative cross-coupling has been developed by merging copper catalysis and electrochemistry, affording C1-alkynylated tetrahydroisoquinolines with good to excellent enantioselectivity. The use of TEMPO as a co-catalytic redox mediator is crucial not only for oxidizing a tetrahydroisoquinoline to an iminium ion species but also for decreasing the oxidation potential of the reaction. A novel bisoxazoline ligand is also reported.
Identifiants
pubmed: 32394631
doi: 10.1002/anie.202005099
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
15254-15259Subventions
Organisme : National Natural Science Foundation of China
ID : 21821002, 21772222, and 91956112
Organisme : Chinese Academy of Sciences
ID : XDB20000000
Organisme : Science and Technology Commission of Shanghai Municipality
ID : 17JC1401200, 18JC1415600, and 19YF1458500
Informations de copyright
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
J. C. Siu, N. Fu, S. Lin, Acc. Chem. Res. 2020, 53, 547-560;
Q. Jing, K. D. Moeller, Acc. Chem. Res. 2020, 53, 135-143;
M. C. Leech, K. Lam, Acc. Chem. Res. 2020, 53, 121-134;
C. Kingston, M. D. Palkowitz, Y. Takahira, J. C. Vantourout, B. K. Peters, Y. Kawamata, P. S. Baran, Acc. Chem. Res. 2020, 53, 72-83;
J. L. Röckl, D. Pollok, R. Franke, S. R. Waldvogel, Acc. Chem. Res. 2020, 53, 45-61;
P. Xiong, H.-C. Xu, Acc. Chem. Res. 2019, 52, 3339-3350.
B. L. Truesdell, T. B. Hamby, C. S. Sevov, J. Am. Chem. Soc. 2020, 142, 5884-5893;
Z. Duan, L. Zhang, W. Zhang, L. Lu, L. Zeng, R. Shi, A. Lei, ACS Catal. 2020, 10, 3828-3831;
J. Xiang, M. Shang, Y. Kawamata, H. Lundberg, S. H. Reisberg, M. Chen, P. Mykhailiuk, G. Beutner, M. R. Collins, A. Davies, M. Del Bel, G. M. Gallego, J. E. Spangler, J. Starr, S. Yang, D. G. Blackmond, P. S. Baran, Nature 2019, 573, 398-402;
M. Rafiee, M. Alherech, S. D. Karlen, S. S. Stahl, J. Am. Chem. Soc. 2019, 141, 15266-15276;
D. Wang, P. Wang, S. Wang, Y.-H. Chen, H. Zhang, A. Lei, Nat. Commun. 2019, 10, 2796-2804;
H. Yan, Z.-W. Hou, H.-C. Xu, Angew. Chem. Int. Ed. 2019, 58, 4592-4595;
Angew. Chem. 2019, 131, 4640-4643.
S. R. Waldvogel, S. Lips, M. Selt, B. Riehl, C. J. Kampf, Chem. Rev. 2018, 118, 6706-6765;
K. D. Moeller, Chem. Rev. 2018, 118, 4817-4833;
Y. Jiang, K. Xu, C. Zeng, Chem. Rev. 2018, 118, 4485-4540;
E. J. Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2, 302-308.
T. Shono, H. Hamaguchi, Y. Matsumura, J. Am. Chem. Soc. 1975, 97, 4264-4268.
A. M. Jones, C. E. Banks, Beilstein J. Org. Chem. 2014, 10, 3056-3072;
O. Onomura, Heterocycles 2012, 85, 2111-2113;
T. Shono, Top. Cur. Chem. 1988, 148, 1-21.
M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230-13319.
M. D. Kärkäs, Chem. Soc. Rev. 2018, 47, 5786-5865.
X. Chang, Q. Zhang, C. Guo, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.202000016;
Angew. Chem. 2020, https://doi.org/10.1002/ange.202000016;
K. Yamamoto, M. Kuriyama, O. Onomura, Acc. Chem. Res. 2020, 53, 105-120;
M. Ghosh, V. S. Shinde, M. Rueping, Beilstein J. Org. Chem. 2019, 15, 2710-2746;
Q. Lin, L. Li, S. Luo, Chem. Eur. J. 2019, 25, 10033-10044.
Selected examples on asymmetric electrochemistry:
U. Dhawa, C. Tian, T. Wdowik, J. C. A. Oliveira, J. Hao, L. Ackermann, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.202003826;
Angew. Chem. 2020, https://doi.org/10.1002/ange.202003826;
Q. Zhang, X. Chang, L. Peng, C. Guo, Angew. Chem. Int. Ed. 2019, 58, 6999-7003;
Angew. Chem. 2019, 131, 7073-7077;
X. Huang, Q. Zhang, J. Lin, K. Harms, E. Meggers, Nat. Catal. 2019, 2, 34-40;
N. Fu, S. Lin, J. Liu, Y. Shen, J. C. Siu, S. Lin, J. Am. Chem. Soc. 2019, 141, 14480-14485;
T. J. Delano, S. E. Reisman, ACS Catal. 2019, 9, 6751-6754;
K.-J. Jiao, Z.-M. Li, X.-T. Xu, L.-P. Zhang, Y.-Q. Li, K. Zhang, T.-S. Mei, Org. Chem. Front. 2018, 5, 2244-2248;
B. H. Nguyen, R. J. Perkins, J. A. Smith, K. D. Moeller, Beilstein J. Org. Chem. 2015, 11, 280-287;
D. Minato, Y. Nagasue, Y. Demizu, O. Onomura, Angew. Chem. Int. Ed. 2008, 47, 9458-9461;
Angew. Chem. 2008, 120, 9600-9603.
M. G. M. D'Oca, R. A. Pilli, V. L. Pardini, D. Curi, F. C. M. Comninos, J. Braz. Chem. Soc. 2001, 12, 507-513.
E. Sierecki, G. Errasti, T. Martens, J. Royer, Tetrahedron 2010, 66, 10002-10007;
D.-S. Lee, Tetrahedron: Asymmetry 2009, 20, 2014-2020;
N. Shankaraiah, R. A. Pilli, L. S. Santos, Tetrahedron Lett. 2008, 49, 5098-5100;
M. Zelgert, M. Nieger, M. Lennartz, E. Steckhan, Tetrahedron 2002, 58, 2641-2646;
Y. Matsumura, Y. Kanda, K. Shirai, O. Onomura, T. Maki, Tetrahedron 2000, 56, 7411-7422.
N. Fu, L. Li, Q. Yang, S. Luo, Org. Lett. 2017, 19, 2122-2125.
L. Ackermann, Acc. Chem. Res. 2020, 53, 84-104.
Y. Yuan, A. Lei, Acc. Chem. Res. 2019, 52, 3309-3324.
K.-J. Jiao, Y.-K. Xing, Q.-L. Yang, H. Qiu, T.-S. Mei, Acc. Chem. Res. 2020, 53, 3309-3324;
Q.-L. Yang, X.-Y. Wang, X.-J. Weng, X. Yang, X.-T. Xu, X. Tong, P. Fang, X.-Y. Wu, T.-S. Mei, Acta Chim. Sinica 2019, 77, 866-873.
M.-J. Luo, M. Hu, R.-J. Song, D.-L. He, J.-H. Li, Chem. Commun. 2019, 55, 1124-1127;
A. Shrestha, M. Lee, A. L. Dunn, M. S. Sanford, Org. Lett. 2018, 20, 204-207;
F. Xu, Y.-J. Li, C. Huang, H.-C. Xu, ACS Catal. 2018, 8, 3820-3824;
T. V. Grayaznova, Y. B. Dudkina, D. R. Islamov, O. N. Kataeva, O. G. Sinyashin, D. A. Vicic, Y. H. Budnikova, J. Organomet. Chem. 2015, 785, 68-71;
F. Kakiuchi, T. Kochi, H. Mutsutani, N. Kobayashi, S. Urano, M. Sato, S. Nishiyama, T. Tanabe, J. Am. Chem. Soc. 2009, 131, 11310-11311;
C. Amatore, C. Cammoun, A. Jutand, Adv. Synth. Catal. 2007, 349, 292-296.
C.-Y. Huang, H. Kang, J. Li, C.-J. Li, J. Org. Chem. 2019, 84, 12705-12721;
S. Gandhi, Org. Biomol. Chem. 2019, 17, 9683-9692;
M.-X. Cheng, S.-D. Yang, Synlett 2017, 28, 159-174;
C.-J. Li, Acc. Chem. Res. 2009, 42, 335-344;
Y. Zhang, B. Feng, Chin. J. Org. Chem. 2014, 34, 2406-2411;
C. Zheng, S.-L. You, RSC Adv. 2014, 4, 6173-6214.
Selected examples on enantioselective CDC couplings of tetrahydroisoquinolines (THIQs) with terminal alkynes:
T. Huang, X. Liu, J. Lang, J. Xu, L. Lin, X. Feng, ACS Catal. 2017, 7, 5654-5660;
I. Perepichka, S. Kundu, Z. Hearne, C. J. Li, Org. Biomol. Chem. 2015, 13, 447-451;
S. Sun, C. Li, P. E. Florencig, H. Lou, L. Liu, Org. Lett. 2015, 17, 1684-1687;
Z. Li, P. D. MacLeod, C.-J. Li, Tetrahedron: Asymmetry 2006, 17, 590-597;
Z. Li, C. J. Li, Org. Lett. 2004, 6, 4997-4999; Other selected examples on Cu-catalyzed enantioselective alkynylation:
X. Pan, Z. Wang, L. Kan, Y. Mao, Y. Zhu, L. Liu, Chem. Sci. 2020, 11, 2414-2419;
X.-Y. Dong, Y.-F. Zhang, C.-L. Ma, Q.-S. Gu, F.-L. Wang, Z.-L. Li, S.-P. Jiang, X.-Y. Liu, Nat. Chem. 2019, 11, 1158-1166;
Z.-H. Zhang, X.-Y. Dong, X.-Y. Du, Q.-S. Gu, Z.-L. Li, X.-Y. Liu, Nat. Commun. 2019, 10, 5689-5698;
Z. Xie, X. Liu, L. Liu, Org. Lett. 2016, 18, 2982-2985.
J.-I. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem. Rev. 2008, 108, 2265-2299.
R. Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492-2521.
F. Wang, S. S. Stahl, Acc. Chem. Res. 2020, 53, 561-574;
J. E. Nutting, M. Rafiee, S. S. Stahl, Chem. Rev. 2018, 118, 4834-4885.
A. J. J. Lennox, S. L. Geos, M. P. Webster, H. F. Koolman, S. W. Djuric, S. S. Stahl, J. Am. Chem. Soc. 2018, 140, 11227-11231;
F. Wang, M. Rafiee, S. S. Stahl, Angew. Chem. Int. Ed. 2018, 57, 6686-6690;
Angew. Chem. 2018, 130, 6796-6800;
Y. Wu, H. Yi, A. Lei, ACS Catal. 2018, 8, 1192-1196;
C. Li, C.-C. Zeng, L.-M. Hu, F.-L. Yang, S. J. Yoo, R. D. Little, Electrochim. Acta 2013, 114, 560-566;
Y. Cao, K. Suzuki, T. Tajima, T. Fuchigami, Tetrahedron 2005, 61, 6854-6859.
J. Thorhauge, M. Roberson, R. G. Hazell, K. A. Jørgensen, Chem. Eur. J. 2002, 8, 1888-1898;
M. P. Sibi, J. Ji, J. Org. Chem. 1997, 62, 3800-3801;
I. W. Davies, L. Gerena, L. Castonguay, C. H. Senanayake, R. D. Larsen, T. R. Verhoeven, P. Reider, Chem. Commun. 1996, 1753-1754.
S. Liao, X.-L. Sun, Y. Tang, Acc. Chem. Res. 2014, 47, 2260-2272;
H. Xiong, H. Xu, S. Liao, Z. Xie, Y. Tang, J. Am. Chem. Soc. 2013, 135, 7851-7854;
C. Deng, L.-J. Wang, J. Zhu, Y. Tang, Angew. Chem. Int. Ed. 2012, 51, 11620-11623;
Angew. Chem. 2012, 124, 11788-11791.
J. D. Scott, R. M. Williams, Chem. Rev. 2012, 112, 1669-1730;
R. J. Reddy, N. Kawai, J. Uenishi, J. Org. Chem. 2012, 77, 11101-11108.
J.-H. Xie, P.-C. Yan, Q.-Q. Zhang, K.-X. Yuan, Q.-L. Zhou, ACS Catal. 2012, 2, 561-564.
Y. Ma, X. Yao, L. Zhang, P. Ni, R. Cheng, J. Ye, Angew. Chem. Int. Ed. 2019, 58, 16548-16552;
Angew. Chem. 2019, 131, 16700-16704.
Cu/TBHP catalyzed CDC couplings:
Z. Li, C. J. Li, J. Am. Chem. Soc. 2004, 126, 11810-11811;
E. Boess, C. Schmitz, M. Klussmann, J. Am. Chem. Soc. 2012, 134, 5317-5325;
M. O. Ratnikov, M. P. Doyle, J. Am. Chem. Soc. 2013, 135, 1549-1557.
M. C. Ryan, L. D. Whitemire, S. D. Mccann, S. S. Stahl, Inorg. Chem. 2019, 58, 10194-10200.
A. Badalyan, S. S. Stahl, Nature 2016, 535, 406-410.