Gaussian Mixture Models for Control of Quasi-Passive Spinal Exoskeletons.


Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
09 May 2020
Historique:
received: 01 04 2020
revised: 30 04 2020
accepted: 07 05 2020
entrez: 14 5 2020
pubmed: 14 5 2020
medline: 10 3 2021
Statut: epublish

Résumé

Research and development of active and passive exoskeletons for preventing work related injuries has steadily increased in the last decade. Recently, new types of quasi-passive designs have been emerging. These exoskeletons use passive viscoelastic elements, such as springs and dampers, to provide support to the user, while using small actuators only to change the level of support or to disengage the passive elements. Control of such devices is still largely unexplored, especially the algorithms that predict the movement of the user, to take maximum advantage of the passive viscoelastic elements. To address this issue, we developed a new control scheme consisting of Gaussian mixture models (GMM) in combination with a state machine controller to identify and classify the movement of the user as early as possible and thus provide a timely control output for the quasi-passive spinal exoskeleton. In a leave-one-out cross-validation procedure, the overall accuracy for providing support to the user was 86 . 72 ± 0 . 86 % (mean ± s.d.) with a sensitivity and specificity of 97 . 46 ± 2 . 09 % and 83 . 15 ± 0 . 85 % respectively. The results of this study indicate that our approach is a promising tool for the control of quasi-passive spinal exoskeletons.

Identifiants

pubmed: 32397455
pii: s20092705
doi: 10.3390/s20092705
pmc: PMC7248695
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Horizon 2020
ID : 687662
Organisme : Horizon 2020
ID : 731540
Organisme : Slovenian Research Agency
ID : P2-0076

Commentaires et corrections

Type : ErratumIn

Références

Ergonomics. 2014;57(12):1864-74
pubmed: 25183258
Appl Ergon. 2016 May;54:212-7
pubmed: 26851481
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5606-9
pubmed: 24111008
Front Robot AI. 2018 May 25;5:53
pubmed: 33500935
IEEE Trans Neural Syst Rehabil Eng. 2019 Nov;27(11):2294-2304
pubmed: 31567097
Appl Ergon. 2019 Jan;74:55-66
pubmed: 30487110
Ergonomics. 2016 May;59(5):671-81
pubmed: 26444053
Sensors (Basel). 2016 Oct 25;16(11):
pubmed: 27792155
IEEE Int Conf Rehabil Robot. 2009;5209582:645-651
pubmed: 20046838
IEEE Trans Neural Syst Rehabil Eng. 2020 Jan;28(1):152-164
pubmed: 31581086
Front Robot AI. 2018 Jun 21;5:72
pubmed: 33500951
Sensors (Basel). 2019 Feb 25;19(4):
pubmed: 30823508
Eur J Appl Physiol. 2020 Feb;120(2):401-412
pubmed: 31828480
Appl Ergon. 2018 Oct;72:94-106
pubmed: 29885731
Ergonomics. 2019 Jul;62(7):903-916
pubmed: 30929608
Physiol Meas. 2009 Apr;30(4):R1-33
pubmed: 19342767
Front Neurorobot. 2018 Apr 12;12:17
pubmed: 29706881
J Neuroeng Rehabil. 2019 May 9;16(1):55
pubmed: 31072370
Physiol Meas. 2006 Oct;27(10):935-51
pubmed: 16951454

Auteurs

Marko Jamšek (M)

Laboratory for Neuromechanics and Biorobotics, Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.

Tadej Petrič (T)

Laboratory for Neuromechanics and Biorobotics, Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.

Jan Babič (J)

Laboratory for Neuromechanics and Biorobotics, Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH