Gaussian Mixture Models for Control of Quasi-Passive Spinal Exoskeletons.
clutched elastic actuators
exoskeleton control
movement prediction
pattern recognition
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
09 May 2020
09 May 2020
Historique:
received:
01
04
2020
revised:
30
04
2020
accepted:
07
05
2020
entrez:
14
5
2020
pubmed:
14
5
2020
medline:
10
3
2021
Statut:
epublish
Résumé
Research and development of active and passive exoskeletons for preventing work related injuries has steadily increased in the last decade. Recently, new types of quasi-passive designs have been emerging. These exoskeletons use passive viscoelastic elements, such as springs and dampers, to provide support to the user, while using small actuators only to change the level of support or to disengage the passive elements. Control of such devices is still largely unexplored, especially the algorithms that predict the movement of the user, to take maximum advantage of the passive viscoelastic elements. To address this issue, we developed a new control scheme consisting of Gaussian mixture models (GMM) in combination with a state machine controller to identify and classify the movement of the user as early as possible and thus provide a timely control output for the quasi-passive spinal exoskeleton. In a leave-one-out cross-validation procedure, the overall accuracy for providing support to the user was 86 . 72 ± 0 . 86 % (mean ± s.d.) with a sensitivity and specificity of 97 . 46 ± 2 . 09 % and 83 . 15 ± 0 . 85 % respectively. The results of this study indicate that our approach is a promising tool for the control of quasi-passive spinal exoskeletons.
Identifiants
pubmed: 32397455
pii: s20092705
doi: 10.3390/s20092705
pmc: PMC7248695
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Horizon 2020
ID : 687662
Organisme : Horizon 2020
ID : 731540
Organisme : Slovenian Research Agency
ID : P2-0076
Commentaires et corrections
Type : ErratumIn
Références
Ergonomics. 2014;57(12):1864-74
pubmed: 25183258
Appl Ergon. 2016 May;54:212-7
pubmed: 26851481
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5606-9
pubmed: 24111008
Front Robot AI. 2018 May 25;5:53
pubmed: 33500935
IEEE Trans Neural Syst Rehabil Eng. 2019 Nov;27(11):2294-2304
pubmed: 31567097
Appl Ergon. 2019 Jan;74:55-66
pubmed: 30487110
Ergonomics. 2016 May;59(5):671-81
pubmed: 26444053
Sensors (Basel). 2016 Oct 25;16(11):
pubmed: 27792155
IEEE Int Conf Rehabil Robot. 2009;5209582:645-651
pubmed: 20046838
IEEE Trans Neural Syst Rehabil Eng. 2020 Jan;28(1):152-164
pubmed: 31581086
Front Robot AI. 2018 Jun 21;5:72
pubmed: 33500951
Sensors (Basel). 2019 Feb 25;19(4):
pubmed: 30823508
Eur J Appl Physiol. 2020 Feb;120(2):401-412
pubmed: 31828480
Appl Ergon. 2018 Oct;72:94-106
pubmed: 29885731
Ergonomics. 2019 Jul;62(7):903-916
pubmed: 30929608
Physiol Meas. 2009 Apr;30(4):R1-33
pubmed: 19342767
Front Neurorobot. 2018 Apr 12;12:17
pubmed: 29706881
J Neuroeng Rehabil. 2019 May 9;16(1):55
pubmed: 31072370
Physiol Meas. 2006 Oct;27(10):935-51
pubmed: 16951454