Experimental taphonomy of fish - role of elevated pressure, salinity and pH.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
12 05 2020
Historique:
received: 30 01 2020
accepted: 20 04 2020
entrez: 14 5 2020
pubmed: 14 5 2020
medline: 1 12 2020
Statut: epublish

Résumé

Experiments are reported to reconstruct the taphonomic pathways of fish toward fossilisation. Acrylic glass autoclaves were designed that allow experiments to be carried out at elevated pressure up to 11 bar, corresponding to water depths of 110 m. Parameters controlled or monitored during decay reactions are pressure, salinity, proton activities (pH), electrochemical potentials (Eh), and bacterial populations. The most effective environmental parameters to delay or prevent putrefaction before a fish carcass is embedded in sediment are (1) a hydrostatic pressure in the water column high enough that a fish carcass may sink to the bottom sediment, (2) hypersaline conditions well above seawater salinity, and (3) a high pH to suppress the reproduction rate of bacteria. Anoxia, commonly assumed to be the key parameter for excellent preservation, is important in keeping the bottom sediment clear of scavengers but it does not seem to slow down or prevent putrefaction. We apply our results to the world-famous Konservat-Lagerstätten Eichstätt-Solnhofen, Green River, and Messel where fish are prominent fossils, and reconstruct from the sedimentary records the environmental conditions that may have promoted preservation. For Eichstätt-Solnhofen an essential factor may have been hypersaline conditions. Waters of the Green River lakes were at times highly alkaline and hypersaline because the lake stratigraphy includes horizons rich in sodium carbonate and halite. In the Messel lake sediments some fossiliferous horizons are rich in FeCO

Identifiants

pubmed: 32398712
doi: 10.1038/s41598-020-64651-8
pii: 10.1038/s41598-020-64651-8
pmc: PMC7217852
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7839

Références

Briggs, D. E. G. & Kear, A. J. Decay and preservation of Polychaetes: taphonomic thresholds in soft-bodied organisms. Paleobiology 19, 107–135 (1993a).
doi: 10.1017/S0094837300012343
Briggs, D. E. G. & Kear, A. J. Fossilisation of soft tissue in the laboratory. Science 259, 1439–1442 (1993b).
doi: 10.1126/science.259.5100.1439
Briggs, D. E. G. & Kear, A. J. Decay and mineralization of shrimps. Palaios 9, 431-456. 13. Allison P.A. 1986. Soft-bodied animals in the fossil record: The role of decay in fragmentation during transport. Geology 14, 979–981 (1994).
Briggs, D. E. G. & McMahon, S. The role of experiments in investigating the taphonomy of exceptional preservation. Palaeontology 59, 1–11 (2016).
doi: 10.1111/pala.12219
Briggs, D. E. G. & Wilby, P. R. The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils. Journal of the Geological Society, London 153, 665–668 (1996).
doi: 10.1144/gsjgs.153.5.0665
Tarhan, L. G., Hood, A. S., Droser, M. L., Gehling, J. G. & Briggs, D. E. G. Exceptional preservation of soft-bodied Ediacara biota promoted by silica-rich oceans. Geology 44, 951–954 (2016).
doi: 10.1130/G38542.1
Briggs, D. E. G. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences 31, 275–301 (2003).
doi: 10.1146/annurev.earth.31.100901.144746
Iniesto, M., Lopez-Archilla, A. I., Fregenal-Martínez, M., Buscalioni, A. D. & Guerrero, M. C. Involvement of microbial mats in delayed decay: An experimental essay on fish preservation. Palaios 28, 56–66 (2013).
doi: 10.2110/palo.2011.p11-099r
Iniesto, M. et al. Involvement of microbial mats in early fossilisation by decay delay and formation of impressions and replicas of vertebrates and invertebrates. Scientific Reports 6, 25716 (2016).
doi: 10.1038/srep25716
Iniesto, M., Villalba, I., Buscalioni, A. D., Guerrero, M. C. & López-Achilla, I. The effect of microbial mats in the decay of Anurans with implications for understanding taphonomic processes in the fossil record. Scientific Reports 7, 45160, https://doi.org/10.1038/srep45160 (2017).
doi: 10.1038/srep45160 pubmed: 28338095 pmcid: 5364532
Wilson, L. A. & Butterfield, N. J. Sediment effects on the preservation of Burgess Shale–type compression fossils. Palaios 29, 145–154 (2014).
doi: 10.2110/palo.2013.075
Brock, F., Parkes, R. J. & Briggs, D. E. G. Experimental pyrite formation associated with decay of plant material. Palaios 21, 499–506 (2006).
doi: 10.2110/palo.2005.P05-077R
Meshal, A. H. Hydrography of a hypersaline coastal lagoon in the Red Sea. Estuarine, Coastal and Shelf Science 24, 167–175 (1987).
doi: 10.1016/0272-7714(87)90063-1
Bellanca, A. et al. Transition from marine to hypersaline conditions in the Messinian Tripoli Formation from the marginal areas of the central Sicilian Basin. Sedimentary Geology 140, 87–105 (2001).
doi: 10.1016/S0037-0738(00)00173-1
Wuttke, M. ‘Weichteil-Erhaltung’ durch lithifizierte Mikroorganismen bei mittel-eozänen Vertebraten aus den Ölschiefern der ‘Grube Messel’ bei Darmstadt. Senckenbergiana Lethaea 64, 509–27 (1983).
Wilby, P. R., Briggs, D. E. G., Bernier, P. & Gaillard, C. Role of microbial mats in the fossilization of soft tissues. Geology 24, 787–790 (1996).
doi: 10.1130/0091-7613(1996)024<0787:ROMMIT>2.3.CO;2
Saitta, E. T., Kaye, T. G. & Vinther, J. Sediment-encased maturation: a novel method for simulating diagenesis in organic fossil preservation. 18. Palaeontology 62, 135–150 (2018).
doi: 10.1111/pala.12386
Gäb, F. et al. Siderite cannot be used as CO2 sensor for Archaean atmospheres. Geochimica et Cosmochimica Acta 214, 209–225 (2017).
doi: 10.1016/j.gca.2017.07.027
Mignard, S. & Flandrois, J. P. 16S rRNA sequencing in routine bacterial identification: A 30-month experiment. Journal of Microbiological Methods 67, 574–581 (2006).
doi: 10.1016/j.mimet.2006.05.009
Allison, P. A. Soft-bodied animals in the fossil record: The role of decay in fragmentation during transport. Geology 14, 979–981 (1986).
doi: 10.1130/0091-7613(1986)14<979:SAITFR>2.0.CO;2
Allison, P. A. Konservat-Lagerstätten: cause and classification. Paleobiology 14, 331–344 (1988).
doi: 10.1017/S0094837300012082
Barton, D. G. & Wilson, M. V. H. Taphonomic variations in Eocene fish-bearing varves at Horsefly, British Columbia, reveal 10 000 years of environmental change. Canadian Journal of Earth Science 42, 137–149 (2005).
doi: 10.1139/e05-001
Jones, P. R., Cottrell, M. T., Kirchman, D. L. & Dexter, S. C. Bacterial community structure of biofilms on artificial surfaces in an estuary. Microbial Ecology 53, 153–162 (2007).
doi: 10.1007/s00248-006-9154-5
Madigan, M. T., Martinko, J. M., Stahl, D. A. & Clark, D. P. Brock Mikrobiologie Kompakt. Pearson Education Inc., 698 p. (2015).
Binkerd, E. & Kolari, O. The history and use of nitrate and nitrite in the curing of meat. Food and Cosmetics. Toxicology 13, 655–661 (1975).
Detkova, E. N. & Pusheva, M. A. Energy metabolism in halophilic and alkaliphilic acetogenic bacteria. Microbiology 75, 1–11 (2006).
doi: 10.1134/S0026261706010012
Li, Y., Mandelco, L. & Wiegel, J. Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum sp. nov. International Journal of Systematic and Evolutionary Microbiology 43, 450–460 (1993).
Cook, G. M., Russell, J. B., Reichert, A. & Wiegel, J. The Intracellular pH of Clostridium paradoxum, an anaerobic, alkaliphilic, and thermophilic bacterium. Applied and Environmental Microbiology 62, 4576–4579 (1996).
doi: 10.1128/AEM.62.12.4576-4579.1996
Dimroth, P., & Cook, G. M. Bacterial Na+ or H+ coupled ATP synthases operating at low electrochemical potential. Advances in Microbial Physiology 175–218. https://doi.org/10.1016/s0065-2911(04)49004-3 (2004).
Hellawell, J. & Orr, P. J. Deciphering taphonomic processes in the Eocene Green River formation of Wyoming. Palaeobiology Palaeo-environment 92, 353–365 (2010).
Munnecke, A., Westphal, H. & Kölbl-Ebert, M. Diagenesis of plattenkalk: examples from the Solnhofen area (Upper Jurassic, southern Germany). Sedimentology 55, 1931–1946 (2008).
doi: 10.1111/j.1365-3091.2008.00975.x
Arratia, G., Schultze, H.-P., Tischlinger, H. & Viohl, G. Solnhofen. Ein Fenster in die Jurazeit. Verlag Dr. Friedrich Pfeil, Munich (2015)
Ebert, M., Kölbl-Ebert, M. & Lane, J.A. Fauna and predator-prey relationships of Ettling, an Actinopterygian fish-dominated Konservat-Lagerstätte from the Late Jurassic of Southern Germany. Plos One 10 (2015).
Hallam, A.H. Jurassic Environments. Cambridge University Press, 284 p. (1975).
Viohl, G. Der geologische Rahmen: Die südliche Frankenalb und ihre Entwicklung. In Solnhofen: Ein Fenster in die Jurazeit (Arratia G., Schultze H.-P., Tischlinger H., Viohl G. eds.). Verlag Dr. Friedrich Pfeil, Munich, 56–100 (2015).
Seilacher, A., Reif, W. E. & Westphal, F. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society of London B 311, 5–23 (1985).
Grande, L. Paleontology of the Green River formation, with review of the fish fauna. Bulletin 63, Geological Survey of Wyoming, 333 p. (1984).
Surdam, R. C. & Stanley, K. O. Lacustrine sedimentation during the culminating phase of Eocene Lake Gosiute, Wyoming (Green River Formation). Geological Society of America Bulletin 90, 93–110 (1979).
doi: 10.1130/0016-7606(1979)90<93:LSDTCP>2.0.CO;2
Eugster, H.P. Lake Magadi, Kenya: a model for rift valley hydrochemistry and sedimentation? In Sedimentation in the African Rifts (Frostick L. E., Renaut R. W., Reid I., Tiercelin J. J., eds.) Geological Society Special Publication 25, 177–189 (1986).
Rasmussen, C. et al. Middle-late Miocene palaeoenvironments, palynological data and a fossil fish Lagerstätte from the Central Kenya Rift (East Africa). Geological Magazine 154, 24–56 (2017).
doi: 10.1017/S0016756815000849
Büchel, G.N. & Schaal, S.F.K. Die Entstehung des Messel-Maares. In Messel. Ein fossiles Tropenökosystem (Schaal S.F.K., Smith K.T., Habersetzer J. eds.), Schweizerbarth, 7–16 (2018).
Ballhaus, C. et al. The silicification of trees in volcanic ash - An experimental study. Geochimica et Cosmochimica Acta 84, 62–74 (2012).
doi: 10.1016/j.gca.2012.01.018
Chafetz, H. S. & Buczynski, C. Bacterially induced lithification of microbial mats. PALAIOS 7, 277–293 (1992).
doi: 10.2307/3514973
Briggs, D. E. G. & Bartels, C. Annelids from the Lower Devonian Hunsrück Slate (Lower Emsian, Rhenish Massif, Germany). Palaeontology 53, 215–232 (2010).
doi: 10.1111/j.1475-4983.2009.00927.x
Hellawell, J. et al. Incipient silicification of recent conifer wood at a Yellowstone hot spring. Geochimica et Cosmochimica Acta 149, 79–87 (2015).
doi: 10.1016/j.gca.2014.10.018
Schopf, J. M. Modes of fossil preservation. Reviews of Paleobotany and Palynology 20, 27–72 (1977).
doi: 10.1016/0034-6667(75)90005-6
Briggs, D. E. G. & Summons, R. E. Ancient biomolecules: their origin, fossilization and significance in revealing the history of life. Bioessays 36, 482–490 (2014).
doi: 10.1002/bies.201400010
Wiemann, J. et al. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nature Communications 9, 4741, https://doi.org/10.1038/s41467-018-07013-3 (2018).
doi: 10.1038/s41467-018-07013-3 pubmed: 30413693 pmcid: 6226439
Ebert, M. The Pycnodontidae (Actinopterygii) in the late Jurassic: 1) The genus Proscinetes Gistel, 1848 in the Solnhofen Archipelago (Germany) and Cerin (France). Archaeopteryx 31, 22–43 (2013).

Auteurs

Fabian Gäb (F)

Institut für Geowissenschaften, University of Bonn, 53115, Bonn, Germany. fgaeb@uni-bonn.de.

Chris Ballhaus (C)

Institut für Geowissenschaften, University of Bonn, 53115, Bonn, Germany. ballhaus@uni-bonn.de.

Eva Stinnesbeck (E)

Institut für Geowissenschaften, University of Bonn, 53115, Bonn, Germany.

Anna Gabriele Kral (AG)

Institut für Geowissenschaften, University of Bonn, 53115, Bonn, Germany.

Kathrin Janssen (K)

Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie, University Hospital Bonn, 53127, Bonn, Germany.

Gabriele Bierbaum (G)

Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie, University Hospital Bonn, 53127, Bonn, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH