Tara Oceans: towards global ocean ecosystems biology.


Journal

Nature reviews. Microbiology
ISSN: 1740-1534
Titre abrégé: Nat Rev Microbiol
Pays: England
ID NLM: 101190261

Informations de publication

Date de publication:
08 2020
Historique:
accepted: 27 03 2020
pubmed: 14 5 2020
medline: 15 12 2020
entrez: 14 5 2020
Statut: ppublish

Résumé

A planetary-scale understanding of the ocean ecosystem, particularly in light of climate change, is crucial. Here, we review the work of Tara Oceans, an international, multidisciplinary project to assess the complexity of ocean life across comprehensive taxonomic and spatial scales. Using a modified sailing boat, the team sampled plankton at 210 globally distributed sites at depths down to 1,000 m. We describe publicly available resources of molecular, morphological and environmental data, and discuss how an ecosystems biology approach has expanded our understanding of plankton diversity and ecology in the ocean as a planetary, interconnected ecosystem. These efforts illustrate how global-scale concepts and data can help to integrate biological complexity into models and serve as a baseline for assessing ecosystem changes and the future habitability of our planet in the Anthropocene epoch.

Identifiants

pubmed: 32398798
doi: 10.1038/s41579-020-0364-5
pii: 10.1038/s41579-020-0364-5
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

428-445

Investigateurs

Silvia G Acinas (SG)
Marcel Babin (M)
Peer Bork (P)
Emmanuel Boss (E)
Chris Bowler (C)
Guy Cochrane (G)
Colomban de Vargas (C)
Michael Follows (M)
Gabriel Gorsky (G)
Nigel Grimsley (N)
Lionel Guidi (L)
Pascal Hingamp (P)
Daniele Iudicone (D)
Olivier Jaillon (O)
Stefanie Kandels (S)
Lee Karp-Boss (L)
Eric Karsenti (E)
Magali Lescot (M)
Fabrice Not (F)
Hiroyuki Ogata (H)
Stéphane Pesant (S)
Nicole Poulton (N)
Jeroen Raes (J)
Christian Sardet (C)
Mike Sieracki (M)
Sabrina Speich (S)
Lars Stemmann (L)
Matthew B Sullivan (MB)
Shinichi Sunagawa (S)
Patrick Wincker (P)

Références

Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
pubmed: 9657713 doi: 10.1126/science.281.5374.237
Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Global Biogeochem. Cycles 29, 1044–1059 (2015).
doi: 10.1002/2014GB005063
Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Global Biogeochem. Cycles 26, GB1028 (2012).
doi: 10.1029/2011GB004099
Kwon, E. Y., Primeau, F. & Sarmiento, J. L. The impact of remineralization depth on the air-sea carbon balance. Nat. Geosci. 2, 630–635 (2009).
doi: 10.1038/ngeo612
Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).
doi: 10.3354/meps010257
Raes, J. & Bork, P. Molecular eco-systems biology: towards an understanding of community function. Nat. Rev. Microbiol. 6, 693–699 (2008).
pubmed: 18587409 doi: 10.1038/nrmicro1935
Karsenti, E. et al. A holistic approach to marine eco-systems biology. PLoS Biol. 9, e1001177 (2011).
pubmed: 22028628 pmcid: 3196472 doi: 10.1371/journal.pbio.1001177
Rusch, D. B. et al. The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5, e77 (2007).
pubmed: 17355176 pmcid: 1821060 doi: 10.1371/journal.pbio.0050077
Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004). This study applies high-throughput DNA sequencing to produce a large data set of microbial community genome fragments from surface seawaters of the Sargasso Sea and identifies more than 1.2 million previously unknown genes, illustrating the diversity of ocean microbial life.
pubmed: 15001713 doi: 10.1126/science.1093857
Yooseph, S. et al. The Sorcerer II global ocean sampling expedition: expanding the universe of protein families. PLoS Biol. 5, e16 (2007).
pubmed: 17355171 pmcid: 1821046 doi: 10.1371/journal.pbio.0050016
Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).
pubmed: 26029378 pmcid: 4443879 doi: 10.1038/sdata.2015.23
Biller, S. J. et al. Marine microbial metagenomes sampled across space and time. Sci. Data 5, 180176 (2018).
pubmed: 30179232 pmcid: 6122167 doi: 10.1038/sdata.2018.176
Duarte, C. M. Seafaring in the 21st century: the Malaspina 2010 Circumnavigation Expedition. Limnol. Oceanogr. Bull. 24, 11–14 (2015).
doi: 10.1002/lob.10008
Karl, D. M. & Church, M. J. Microbial oceanography and the Hawaii ocean time-series programme. Nat. Rev. Microbiol. 12, 699–713 (2014).
pubmed: 25157695 doi: 10.1038/nrmicro3333
Kopf, A. et al. The ocean sampling day consortium. Gigascience 4, 27 (2015).
pubmed: 26097697 pmcid: 4473829 doi: 10.1186/s13742-015-0066-5
Amaral-Zettler, L. et al. in Life in the World’s Oceans (ed. McIntyre, A. D.) 221–245 (Wiley, 2010).
Longhurst, A. Seasonal cycles of pelagic production and consumption. Prog. Oceanogr. 36, 77–167 (1995).
doi: 10.1016/0079-6611(95)00015-1
Sunagawa, S., Karsenti, E., Bowler, C. & Bork, P. Computational eco-systems biology in Tara Oceans: translating data into knowledge. Mol. Syst. Biol. 11, 809 (2015).
pubmed: 25999085 pmcid: 4461402 doi: 10.15252/msb.20156272
Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).
pubmed: 10376593 doi: 10.1038/21119
Suttle, C. A. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
pubmed: 17853907 doi: 10.1038/nrmicro1750
Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).
pubmed: 10704475 pmcid: 98987 doi: 10.1128/MMBR.64.1.69-114.2000
Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).
pubmed: 25639680 doi: 10.1038/nrmicro3404
Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015). This article describes the first of the Tara Oceans efforts to investigate the diversity and structure of double-stranded DNA viral communities in the oceans, supporting a model of passive global transport by ocean currents and selection by local environmental conditions.
pubmed: 25999515 doi: 10.1126/science.1261498
Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123.e14 (2019).
pubmed: 31031001 pmcid: 6525058 doi: 10.1016/j.cell.2019.03.040
Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).
pubmed: 27654921 doi: 10.1038/nature19366
Duhaime, M. B. et al. Comparative omics and trait analyses of marine pseudoalteromonas phages advance the phage OTU concept. Front. Microbiol. 8, 1241 (2017).
pubmed: 28729861 pmcid: 5498523 doi: 10.3389/fmicb.2017.01241
Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 15892 (2017).
pubmed: 28643787 pmcid: 5490008 doi: 10.1038/ncomms15892
Warwick-Dugdale, J. et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ 7, e6800 (2019).
pubmed: 31086738 pmcid: 6487183 doi: 10.7717/peerj.6800
Nishimura, Y. et al. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere 2, e00359-16 (2017).
pubmed: 28261669 pmcid: 5332604 doi: 10.1128/mSphere.00359-16
Nishimura, Y. et al. ViPTree: the viral proteomic tree server. Bioinformatics 33, 2379–2380 (2017).
pubmed: 28379287 doi: 10.1093/bioinformatics/btx157
Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).
doi: 10.1038/s41587-019-0100-8
Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and bacteria. PeerJ 5, e3243 (2017).
pubmed: 28480138 pmcid: 5419219 doi: 10.7717/peerj.3243
Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).
pubmed: 30556814 doi: 10.1038/nbt.4306
Simmonds, P. et al. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).
pubmed: 28134265 doi: 10.1038/nrmicro.2016.177
Baas-Becking, L. G. M. Geobiologie of Inleiding tot de Milieukunde (Van Stockum & Zoon, 1934).
Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).
pubmed: 31730851 pmcid: 6912166 doi: 10.1016/j.cell.2019.10.008
Jia, Y., Shan, J., Millard, A., Clokie, M. R. & Mann, N. H. Light-dependent adsorption of photosynthetic cyanophages to Synechococcus sp. WH7803. FEMS Microbiol. Lett. 310, 120–126 (2010).
pubmed: 20704597 doi: 10.1111/j.1574-6968.2010.02054.x
Ribalet, F. et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc. Natl Acad. Sci. USA 112, 8008–8012 (2015).
pubmed: 26080407 doi: 10.1073/pnas.1424279112 pmcid: 4491802
Yoshida, T. et al. Locality and diel cycling of viral production revealed by a 24 h time course cross-omics analysis in a coastal region of Japan. ISME J. 12, 1287–1295 (2018).
pubmed: 29382948 pmcid: 5932082 doi: 10.1038/s41396-018-0052-x
Fridman, S. et al. A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells. Nat. Microbiol. 2, 1350–1357 (2017).
pubmed: 28785078 doi: 10.1038/s41564-017-0002-9
Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424, 741 (2003).
pubmed: 12917674 doi: 10.1038/424741a
Sullivan, M. B. et al. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 4, e234 (2006).
pubmed: 16802857 pmcid: 1484495 doi: 10.1371/journal.pbio.0040234
Hurwitz, B. L., Hallam, S. J. & Sullivan, M. B. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 14, R123 (2013).
pubmed: 24200126 pmcid: 4053976 doi: 10.1186/gb-2013-14-11-r123
Howard-Varona, C. et al. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus. ISME J. 11, 284–295 (2017).
pubmed: 27187794 doi: 10.1038/ismej.2016.81
Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016). This study integrates Tara Oceans data across organismal size classes from epipelagic depths, revealing that unexpected taxa can predict the downward export of carbon by biological processes in subtropical, nutrient-depleted oceans.
pubmed: 26863193 pmcid: 4851848 doi: 10.1038/nature16942
Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).
pubmed: 31896786 pmcid: 7082346 doi: 10.1038/s41396-019-0580-z
Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea - viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).
doi: 10.2307/1313569
Hurwitz, B. L., Brum, J. R. & Sullivan, M. B. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean virome. ISME J. 9, 472–484 (2015).
pubmed: 25093636 doi: 10.1038/ismej.2014.143
Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).
pubmed: 29371626 pmcid: 5785536 doi: 10.1038/s41467-017-02342-1
Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013).
pubmed: 23575371 pmcid: 3749498 doi: 10.1038/ismej.2013.59
Lescot, M. et al. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages. ISME J. 10, 1134–1146 (2016).
pubmed: 26613339 doi: 10.1038/ismej.2015.192
Villar, E. et al. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 348, 1261447 (2015).
pubmed: 25999514 doi: 10.1126/science.1261447
Li, Y. et al. The earth is small for “Leviathans”: long distance dispersal of giant viruses across aquatic environments. Microbes Environ. 34, 334–339 (2019).
pubmed: 31378760 pmcid: 6759346 doi: 10.1264/jsme2.ME19037
Mihara, T. et al. Taxon richness of “Megaviridae” exceeds those of bacteria and archaea in the ocean. Microbes Environ. 33, 162–171 (2018).
pubmed: 29806626 pmcid: 6031395 doi: 10.1264/jsme2.ME17203
von Dassow, P. et al. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. ISME J. 9, 1365–1377 (2015).
doi: 10.1038/ismej.2014.221
Clerissi, C. et al. Deep sequencing of amplified Prasinovirus and host green algal genes from an Indian Ocean transect reveals interacting trophic dependencies and new genotypes. Environ. Microbiol. Rep. 7, 979–989 (2015).
pubmed: 26472079 doi: 10.1111/1758-2229.12345
Clerissi, C. et al. Unveiling of the diversity of prasinoviruses (Phycodnaviridae) in marine samples by using high-throughput sequencing analyses of PCR-amplified DNA polymerase and major capsid protein genes. Appl. Environ. Microbiol. 80, 3150–3160 (2014).
pubmed: 24632251 pmcid: 4018913 doi: 10.1128/AEM.00123-14
Clerissi, C. et al. Prasinovirus distribution in the northwest Mediterranean Sea is affected by the environment and particularly by phosphate availability. Virology 466–467, 146–157 (2014).
pubmed: 25109909 doi: 10.1016/j.virol.2014.07.016
Li, Y. et al. Degenerate PCR primers to reveal the diversity of giant viruses in coastal waters. Viruses 10 (2018).
Blanc-Mathieu, R. et al. Viruses of the eukaryotic plankton are predicted to increase carbon export efficiency in the global sunlit ocean. Preprint at bioRxiv https://doi.org/10.1101/710228 (2019).
Bolduc, B., Youens-Clark, K., Roux, S., Hurwitz, B. L. & Sullivan, M. B. iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. ISME J. 11, 7–14 (2017).
pubmed: 27420028 doi: 10.1038/ismej.2016.89
Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).
pubmed: 26938550 pmcid: 4810256 doi: 10.3390/v8030066
Steward, G. F. et al. Are we missing half of the viruses in the ocean? ISME J. 7, 672–679 (2013).
pubmed: 23151645 doi: 10.1038/ismej.2012.121
Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083.e21 (2019).
pubmed: 31730850 pmcid: 6912165 doi: 10.1016/j.cell.2019.10.014
Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015). This study catalogues 40 million ocean microbial genes and shows temperature to be a main driver of open-ocean microbial community composition in the epipelagic zone at a global scale.
pubmed: 25999513 doi: 10.1126/science.1261359
Kultima, J. R. et al. MOCAT: a metagenomics assembly and gene prediction toolkit. PLoS One 7, e47656 (2012).
pubmed: 23082188 pmcid: 3474746 doi: 10.1371/journal.pone.0047656
Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).
pubmed: 24997786 doi: 10.1038/nbt.2942
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
pubmed: 20203603 pmcid: 3779803 doi: 10.1038/nature08821
DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).
pubmed: 16439655 doi: 10.1126/science.1120250
Giovannoni, S. J. & Stingl, U. Molecular diversity and ecology of microbial plankton. Nature 437, 343–348 (2005).
pubmed: 16163344 doi: 10.1038/nature04158
Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006).
pubmed: 16938845 doi: 10.1073/pnas.0602399103 pmcid: 1559760
Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10, 1014 (2019).
pubmed: 30833550 pmcid: 6399450 doi: 10.1038/s41467-019-08844-4
Farrant, G. K. et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc. Natl Acad. Sci. USA 113, E3365–E3374 (2016).
pubmed: 27302952 doi: 10.1073/pnas.1524865113 pmcid: 4914166
Grebert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl Acad. Sci. USA 115, E2010–E2019 (2018).
pubmed: 29440402 doi: 10.1073/pnas.1717069115 pmcid: 5834698
Yelton, A. P. et al. Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME J. 10, 2946–2957 (2016).
pubmed: 27137127 pmcid: 5148188 doi: 10.1038/ismej.2016.64
Royo-Llonch, M. et al. Exploring microdiversity in novel Kordia sp. (Bacteroidetes) with proteorhodopsin from the tropical Indian Ocean via single amplified genomes. Front. Microbiol. 8, 1317 (2017).
pubmed: 28790980 pmcid: 5525439 doi: 10.3389/fmicb.2017.01317
Royo-Llonch, M., Sánchez, P., González, J. M., Pedrós-Alió, C. & Acinas, S. G. Ecological and functional capabilities of an uncultured Kordia sp. Syst. Appl. Microbiol. 43, 126045 (2020).
pubmed: 31831198 doi: 10.1016/j.syapm.2019.126045
Cabello, A. M. et al. Global distribution and vertical patterns of a prymnesiophyte-cyanobacteria obligate symbiosis. ISME J. 10, 693–706 (2016).
pubmed: 26405830 doi: 10.1038/ismej.2015.147
Cornejo-Castillo, F. M. et al. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nat. Commun. 7, 11071 (2016).
pubmed: 27002549 pmcid: 4804200 doi: 10.1038/ncomms11071
Cornejo-Castillo, F. M. et al. UCYN-A3, a newly characterized open ocean sublineage of the symbiotic N2 -fixing cyanobacterium Candidatus Atelocyanobacterium thalassa. Environ. Microbiol. 21, 111–124 (2019).
pubmed: 30255541 doi: 10.1111/1462-2920.14429
Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).
pubmed: 29891866 pmcid: 6792437 doi: 10.1038/s41564-018-0176-9
Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018). This study exemplifies the use of Tara Oceans data to formulate new hypotheses by reconstructing genomes that support a mitochondrial origin before the divergence of all Alphaproteobacteria sampled to date.
pubmed: 29695865 doi: 10.1038/s41586-018-0059-5
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
pubmed: 28894102 doi: 10.1038/s41564-017-0012-7
Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).
pubmed: 29337314 pmcid: 5769542 doi: 10.1038/sdata.2017.203
Pushkarev, A. et al. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558, 595–599 (2018).
pubmed: 29925949 doi: 10.1038/s41586-018-0225-9
Oppermann, J. et al. MerMAIDs: a family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nat. Commun. 10, 3315 (2019).
pubmed: 31346176 pmcid: 6658528 doi: 10.1038/s41467-019-11322-6
Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).
pubmed: 27634532 doi: 10.1126/science.aaf4507
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
pubmed: 29784790 doi: 10.1073/pnas.1711842115 pmcid: 6016768
Caron, D. A., Countway, P. D., Jones, A. C., Kim, D. Y. & Schnetzer, A. Marine protistan diversity. Ann. Rev. Mar. Sci. 4, 467–493 (2012).
pubmed: 22457984 doi: 10.1146/annurev-marine-120709-142802
Colin, S. et al. Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. eLife 6, e26066 (2017).
pubmed: 29087936 pmcid: 5663481 doi: 10.7554/eLife.26066
Decelle, J. et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).
pubmed: 25740460 doi: 10.1111/1755-0998.12401
Guillou, L. et al. The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).
pubmed: 23193267 doi: 10.1093/nar/gks1160
Seeleuthner, Y. et al. Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat. Commun. 9, 310 (2018).
pubmed: 29358710 pmcid: 5778133 doi: 10.1038/s41467-017-02235-3
Sieracki, M. E. et al. Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems. Sci. Rep. 9, 6025 (2019).
pubmed: 30988337 pmcid: 6465268 doi: 10.1038/s41598-019-42487-1
de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015). This study surveys the eukaryotic diversity of ocean plankton from the smallest protists to millimetre-sized animals by 18S ribosomal RNA gene amplicon sequencing, revealing 150,000 taxonomic groups dominated by protistan parasites and symbiotic hosts.
pubmed: 25999516 doi: 10.1126/science.1261605
Flegontova, O. et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065 (2016).
pubmed: 27875689 doi: 10.1016/j.cub.2016.09.031
Decelle, J. et al. Worldwide occurrence and activity of the reef-building coral symbiont Symbiodinium in the open ocean. Curr. Biol. 28, 3625–3633 e3623 (2018).
pubmed: 30416058 doi: 10.1016/j.cub.2018.09.024
Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015). This study evaluates the effect of abiotic and biotic factors on organismal interactions among bacteria, archaea, eukaryotes and viruses, emphasizing the role of grazing, pathogenicity and parasitism as predictors of plankton community structure.
pubmed: 25999517 doi: 10.1126/science.1262073
Vincent, F. J. et al. The epibiotic life of the cosmopolitan diatom Fragilariopsis doliolus on heterotrophic ciliates in the open ocean. ISME J. 12, 1094–1108 (2018).
pubmed: 29348580 pmcid: 5864193 doi: 10.1038/s41396-017-0029-1
Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, E1516–E1525 (2016).
pubmed: 26929361 doi: 10.1073/pnas.1509523113 pmcid: 4801293
Le Bescot, N. et al. Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environ. Microbiol. 18, 609–626 (2016).
pubmed: 26337598 doi: 10.1111/1462-2920.13039
Lopes Dos Santos, A. et al. Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters. ISME J. 11, 512–528 (2017).
pubmed: 27779617 doi: 10.1038/ismej.2016.120
Gimmler, A., Korn, R., de Vargas, C., Audic, S. & Stoeck, T. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Sci. Rep. 6, 33555 (2016).
pubmed: 27633177 pmcid: 5025661 doi: 10.1038/srep33555
Beaugrand, G., Luczak, C., Goberville, E. & Kirby, R. R. Marine biodiversity and the chessboard of life. PLoS One 13, e0194006 (2018).
pubmed: 29565983 pmcid: 5864006 doi: 10.1371/journal.pone.0194006
Biard, T. et al. Biogeography and diversity of Collodaria (Radiolaria) in the global ocean. ISME J. 11, 1331–1344 (2017).
pubmed: 28338675 pmcid: 5437347 doi: 10.1038/ismej.2017.12
Del Campo, J. et al. Assessing the diversity and distribution of apicomplexans in host and free-living environments using high-throughput amplicon data and a phylogenetically informed reference framework. Front. Microbiol. 10, 2373 (2019).
pubmed: 31708883 pmcid: 6819320 doi: 10.3389/fmicb.2019.02373
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
pubmed: 28731476 pmcid: 5702726 doi: 10.1038/ismej.2017.119
Foster, Z. S., Sharpton, T. J. & Grunwald, N. J. Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).
pubmed: 28222096 pmcid: 5340466 doi: 10.1371/journal.pcbi.1005404
Pierella Karlusich, J. J., Ibarbalz, F. M. & Bowler, C. Phytoplankton in the Tara Ocean. Annu. Rev. Mar. Sci. 12, 233–265 (2020).
doi: 10.1146/annurev-marine-010419-010706
Leblanc, K. et al. Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat. Commun. 9, 953 (2018).
pubmed: 29507291 pmcid: 5838239 doi: 10.1038/s41467-018-03376-9
Treguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).
doi: 10.1038/s41561-017-0028-x
Rabosky, D. L. & Sorhannus, U. Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457, 183–186 (2009).
pubmed: 19129846 doi: 10.1038/nature07435
Azaele, S., Pigolotti, S., Banavar, J. R. & Maritan, A. Dynamical evolution of ecosystems. Nature 444, 926–928 (2006).
pubmed: 17167485 doi: 10.1038/nature05320
Ferriere, R. & Cazelles, B. Universal power laws govern intermittent rarity in communities of interacting species. Ecology 80, 1505–1521 (1999).
doi: 10.1890/0012-9658(1999)080[1505:UPLGIR]2.0.CO;2
Gawryluk, R. M. R. et al. Morphological identification and single-cell genomics of marine diplonemids. Curr. Biol. 26, 3053–3059 (2016).
pubmed: 27875688 doi: 10.1016/j.cub.2016.09.013
Mordret, S. et al. The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.). ISME J. 10, 1424–1436 (2016).
pubmed: 26684730 doi: 10.1038/ismej.2015.211
Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).
pubmed: 27096373 doi: 10.1038/nature17652
Vannier, T. et al. Survey of the green picoalga Bathycoccus genomes in the global ocean. Sci. Rep. 6, 37900 (2016).
pubmed: 27901108 pmcid: 5128809 doi: 10.1038/srep37900
Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).
pubmed: 27814033 doi: 10.1146/annurev-marine-010814-015924
Roullier, F. et al. Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone. Biogeosciences 11, 4541–4557 (2014).
doi: 10.5194/bg-11-4541-2014
Corse, E. et al. Phylogenetic analysis of Thecosomata Blainville, 1824 (holoplanktonic opisthobranchia) using morphological and molecular data. PLoS One 8, e59439 (2013).
pubmed: 23593138 pmcid: 3625178 doi: 10.1371/journal.pone.0059439
Gasmi, S. et al. Evolutionary history of Chaetognatha inferred from molecular and morphological data: a case study for body plan simplification. Front. Zool. 11, 84 (2014).
pubmed: 25473413 pmcid: 4254178 doi: 10.1186/s12983-014-0084-7
Madoui, M. A. et al. New insights into global biogeography, population structure and natural selection from the genome of the epipelagic copepod Oithona. Mol. Ecol. 26, 4467–4482 (2017).
pubmed: 28636804 doi: 10.1111/mec.14214
Arif, M. et al. Discovering millions of plankton genomic markers from the Atlantic Ocean and the Mediterranean Sea. Mol. Ecol. Resour. 19, 526–535 (2019).
pubmed: 30575285 doi: 10.1111/1755-0998.12985
Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Global Biogeochem. Cycles 33, 391–419 (2019).
doi: 10.1029/2018GB006022
Busseni, G. et al. Meta-omics reveals genetic flexibility of diatom nitrogen transporters in response to environmental changes. Mol. Biol. Evol. 36, 2522–2535 (2019).
pmcid: 6805229 doi: 10.1093/molbev/msz157
D’Alelio, D. et al. Modelling the complexity of plankton communities exploiting omics potential: From present challenges to an integrative pipeline. Curr. Opin. Syst. Biol. 13, 68–74 (2019).
doi: 10.1016/j.coisb.2018.10.003
Whittaker, R. H. Evolution and measurement of species diversity. Taxon 21, 213–251 (1972).
doi: 10.2307/1218190
Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. USA 105, 7774–7778 (2008).
pubmed: 18509059 doi: 10.1073/pnas.0803070105 pmcid: 2409396
Raes, E. J. et al. Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. Proc. Natl Acad. Sci. USA 115, E8266–E8275 (2018).
pubmed: 30108147 doi: 10.1073/pnas.1719335115 pmcid: 6126737
Capotondi, A. et al. Observational needs supporting marine ecosystems modeling and forecasting: from the global ocean to regional and coastal systems. Front. Mar. Sci. 6, 623 (2019).
doi: 10.3389/fmars.2019.00623
Lombard, F. et al. Globally consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 6, 196 (2019).
doi: 10.3389/fmars.2019.00196
Ten Hoopen, P. et al. Marine microbial biodiversity, bioinformatics and biotechnology (M2B3) data reporting and service standards. Stand. Genomic Sci. 10, 20 (2015).
pubmed: 26203332 pmcid: 4511511 doi: 10.1186/s40793-015-0001-5
Gorsky, G. et al. Expanding Tara Oceans protocols for underway, ecosystemic sampling of the ocean-atmosphere interface during Tara Pacific expedition (2016–2018). Front. Mar. Sci. 6, 750 (2019).
doi: 10.3389/fmars.2019.00750
Planes, S. et al. The Tara Pacific expedition — a pan-ecosystemic approach of the “-omics” complexity of coral reef holobionts across the Pacific Ocean. PLoS Biol. 17, e3000483 (2019).
pubmed: 31545807 pmcid: 6776362 doi: 10.1371/journal.pbio.3000483
Bolhuis, H. et al. Atlantic Ocean Research Alliance — marine microbiome roadmap (AORA, 2020).
Cram, J. A. et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 9, 563–580 (2015).
pubmed: 25203836 doi: 10.1038/ismej.2014.153
D’Alcala, M. R. et al. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Sci. Mar. 68, 65–83 (2004).
doi: 10.3989/scimar.2004.68s165
Gilbert, J. A. et al. The taxonomic and functional diversity of microbes at a temperate coastal site: a ‘multi-omic’ study of seasonal and diel temporal variation. PLoS One 5, e15545 (2010).
pubmed: 21124740 pmcid: 2993967 doi: 10.1371/journal.pone.0015545
Romagnan, J. B. et al. Comprehensive model of annual plankton succession based on the whole-plankton time series approach. PLoS One 10, e0119219 (2015).
pubmed: 25780912 pmcid: 4363592 doi: 10.1371/journal.pone.0119219
Gasol, J. M. et al. ICES phytoplankton and microbial plankton status report 2009/2010 (eds O’Brien, T. D., Li, W. K. W. & Morán, X. A. G.) 138–141 (ICES, 2012).
Martin-Platero, A. M. et al. High resolution time series reveals cohesive but short-lived communities in coastal plankton. Nat. Commun. 9, 266 (2018).
pubmed: 29348571 pmcid: 5773528 doi: 10.1038/s41467-017-02571-4
Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).
pubmed: 29531367 doi: 10.1038/s41564-018-0128-4
Marx, V. When microbiologists plunge into the ocean. Nat. Methods 17, 133–136 (2020).
pubmed: 31988521 doi: 10.1038/s41592-020-0736-9
Buttigieg, P. L. et al. Marine microbes in 4D-using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr. Opin. Microbiol. 43, 169–185 (2018).
pubmed: 29477022 doi: 10.1016/j.mib.2018.01.015
Shneider, A. M. Four stages of a scientific discipline; four types of scientist. Trends Biochem. Sci. 34, 217–223 (2009).
pubmed: 19362484 doi: 10.1016/j.tibs.2009.02.002
Karl, D. M. A sea of change: biogeochemical variability in the North Pacific Subtropical Gyre. Ecosystems 2, 181–214 (1999).
doi: 10.1007/s100219900068
Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019). This review article provides a consensus statement, the ‘microbiologists’ warning to humanity’, documenting how microorganisms will affect and will be affected by climate change.
pubmed: 31213707 pmcid: 7136171 doi: 10.1038/s41579-019-0222-5
Bork, P. et al. Tara Oceans studies plankton at planetary scale. Introduction. Science 348, 873 (2015).
pubmed: 25999501 doi: 10.1126/science.aac5605
Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ. Microbiol. 16, 2659–2671 (2014).
pubmed: 24102695 doi: 10.1111/1462-2920.12250
Nakayama, T. et al. Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host. Proc. Natl Acad. Sci. USA 116, 15973–15978 (2019).
pubmed: 31235587 doi: 10.1073/pnas.1902538116 pmcid: 6689939
Probert, I. et al. Brandtodinium gen. nov. and B. nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians. J. Phycol. 50, 388–399 (2014).
pubmed: 26988195 doi: 10.1111/jpy.12174
Decelle, J., Colin, S. & Foster, R. A. in Marine Protists: Diversity and Dynamics (eds Ohtsuka, S. et al.) 465–500 (Springer, 2015).

Auteurs

Shinichi Sunagawa (S)

Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland. ssunagawa@ethz.ch.

Silvia G Acinas (SG)

Department of Marine Biology and Oceanography, Institute of Marine Sciences-CSIC, Barcelona, Spain.

Peer Bork (P)

Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.
Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.

Chris Bowler (C)

Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.

Damien Eveillard (D)

Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.
Université de Nantes, CNRS, UMR6004, LS2N, Nantes, France.

Gabriel Gorsky (G)

Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.
Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France.

Lionel Guidi (L)

Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.
Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France.

Daniele Iudicone (D)

Stazione Zoologica Anton Dohrn, Naples, Italy.

Eric Karsenti (E)

Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.
Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany.

Fabien Lombard (F)

Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.
Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France.

Hiroyuki Ogata (H)

Institute for Chemical Research, Kyoto University, Kyoto, Japan.

Stephane Pesant (S)

PANGAEA, University of Bremen, Bremen, Germany.
MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.

Matthew B Sullivan (MB)

Department of Microbiology, The Ohio State University, Columbus, OH, USA.
Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
Center for RNA Biology, The Ohio State University, Columbus, OH, USA.

Patrick Wincker (P)

Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.
Génomique Métabolique, Genoscope, Institut de Biologie Francois Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Evry, Université Paris-Saclay, Evry, France.

Colomban de Vargas (C)

Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France. vargas@sb-roscoff.fr.
Sorbonne Université and CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Roscoff, France. vargas@sb-roscoff.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH