Tara Oceans: towards global ocean ecosystems biology.
Journal
Nature reviews. Microbiology
ISSN: 1740-1534
Titre abrégé: Nat Rev Microbiol
Pays: England
ID NLM: 101190261
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
accepted:
27
03
2020
pubmed:
14
5
2020
medline:
15
12
2020
entrez:
14
5
2020
Statut:
ppublish
Résumé
A planetary-scale understanding of the ocean ecosystem, particularly in light of climate change, is crucial. Here, we review the work of Tara Oceans, an international, multidisciplinary project to assess the complexity of ocean life across comprehensive taxonomic and spatial scales. Using a modified sailing boat, the team sampled plankton at 210 globally distributed sites at depths down to 1,000 m. We describe publicly available resources of molecular, morphological and environmental data, and discuss how an ecosystems biology approach has expanded our understanding of plankton diversity and ecology in the ocean as a planetary, interconnected ecosystem. These efforts illustrate how global-scale concepts and data can help to integrate biological complexity into models and serve as a baseline for assessing ecosystem changes and the future habitability of our planet in the Anthropocene epoch.
Identifiants
pubmed: 32398798
doi: 10.1038/s41579-020-0364-5
pii: 10.1038/s41579-020-0364-5
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
428-445Investigateurs
Silvia G Acinas
(SG)
Marcel Babin
(M)
Peer Bork
(P)
Emmanuel Boss
(E)
Chris Bowler
(C)
Guy Cochrane
(G)
Colomban de Vargas
(C)
Michael Follows
(M)
Gabriel Gorsky
(G)
Nigel Grimsley
(N)
Lionel Guidi
(L)
Pascal Hingamp
(P)
Daniele Iudicone
(D)
Olivier Jaillon
(O)
Stefanie Kandels
(S)
Lee Karp-Boss
(L)
Eric Karsenti
(E)
Magali Lescot
(M)
Fabrice Not
(F)
Hiroyuki Ogata
(H)
Stéphane Pesant
(S)
Nicole Poulton
(N)
Jeroen Raes
(J)
Christian Sardet
(C)
Mike Sieracki
(M)
Sabrina Speich
(S)
Lars Stemmann
(L)
Matthew B Sullivan
(MB)
Shinichi Sunagawa
(S)
Patrick Wincker
(P)
Références
Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
pubmed: 9657713
doi: 10.1126/science.281.5374.237
Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Global Biogeochem. Cycles 29, 1044–1059 (2015).
doi: 10.1002/2014GB005063
Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Global Biogeochem. Cycles 26, GB1028 (2012).
doi: 10.1029/2011GB004099
Kwon, E. Y., Primeau, F. & Sarmiento, J. L. The impact of remineralization depth on the air-sea carbon balance. Nat. Geosci. 2, 630–635 (2009).
doi: 10.1038/ngeo612
Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).
doi: 10.3354/meps010257
Raes, J. & Bork, P. Molecular eco-systems biology: towards an understanding of community function. Nat. Rev. Microbiol. 6, 693–699 (2008).
pubmed: 18587409
doi: 10.1038/nrmicro1935
Karsenti, E. et al. A holistic approach to marine eco-systems biology. PLoS Biol. 9, e1001177 (2011).
pubmed: 22028628
pmcid: 3196472
doi: 10.1371/journal.pbio.1001177
Rusch, D. B. et al. The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5, e77 (2007).
pubmed: 17355176
pmcid: 1821060
doi: 10.1371/journal.pbio.0050077
Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004). This study applies high-throughput DNA sequencing to produce a large data set of microbial community genome fragments from surface seawaters of the Sargasso Sea and identifies more than 1.2 million previously unknown genes, illustrating the diversity of ocean microbial life.
pubmed: 15001713
doi: 10.1126/science.1093857
Yooseph, S. et al. The Sorcerer II global ocean sampling expedition: expanding the universe of protein families. PLoS Biol. 5, e16 (2007).
pubmed: 17355171
pmcid: 1821046
doi: 10.1371/journal.pbio.0050016
Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).
pubmed: 26029378
pmcid: 4443879
doi: 10.1038/sdata.2015.23
Biller, S. J. et al. Marine microbial metagenomes sampled across space and time. Sci. Data 5, 180176 (2018).
pubmed: 30179232
pmcid: 6122167
doi: 10.1038/sdata.2018.176
Duarte, C. M. Seafaring in the 21st century: the Malaspina 2010 Circumnavigation Expedition. Limnol. Oceanogr. Bull. 24, 11–14 (2015).
doi: 10.1002/lob.10008
Karl, D. M. & Church, M. J. Microbial oceanography and the Hawaii ocean time-series programme. Nat. Rev. Microbiol. 12, 699–713 (2014).
pubmed: 25157695
doi: 10.1038/nrmicro3333
Kopf, A. et al. The ocean sampling day consortium. Gigascience 4, 27 (2015).
pubmed: 26097697
pmcid: 4473829
doi: 10.1186/s13742-015-0066-5
Amaral-Zettler, L. et al. in Life in the World’s Oceans (ed. McIntyre, A. D.) 221–245 (Wiley, 2010).
Longhurst, A. Seasonal cycles of pelagic production and consumption. Prog. Oceanogr. 36, 77–167 (1995).
doi: 10.1016/0079-6611(95)00015-1
Sunagawa, S., Karsenti, E., Bowler, C. & Bork, P. Computational eco-systems biology in Tara Oceans: translating data into knowledge. Mol. Syst. Biol. 11, 809 (2015).
pubmed: 25999085
pmcid: 4461402
doi: 10.15252/msb.20156272
Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).
pubmed: 10376593
doi: 10.1038/21119
Suttle, C. A. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
pubmed: 17853907
doi: 10.1038/nrmicro1750
Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).
pubmed: 10704475
pmcid: 98987
doi: 10.1128/MMBR.64.1.69-114.2000
Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).
pubmed: 25639680
doi: 10.1038/nrmicro3404
Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015). This article describes the first of the Tara Oceans efforts to investigate the diversity and structure of double-stranded DNA viral communities in the oceans, supporting a model of passive global transport by ocean currents and selection by local environmental conditions.
pubmed: 25999515
doi: 10.1126/science.1261498
Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123.e14 (2019).
pubmed: 31031001
pmcid: 6525058
doi: 10.1016/j.cell.2019.03.040
Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).
pubmed: 27654921
doi: 10.1038/nature19366
Duhaime, M. B. et al. Comparative omics and trait analyses of marine pseudoalteromonas phages advance the phage OTU concept. Front. Microbiol. 8, 1241 (2017).
pubmed: 28729861
pmcid: 5498523
doi: 10.3389/fmicb.2017.01241
Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 15892 (2017).
pubmed: 28643787
pmcid: 5490008
doi: 10.1038/ncomms15892
Warwick-Dugdale, J. et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ 7, e6800 (2019).
pubmed: 31086738
pmcid: 6487183
doi: 10.7717/peerj.6800
Nishimura, Y. et al. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere 2, e00359-16 (2017).
pubmed: 28261669
pmcid: 5332604
doi: 10.1128/mSphere.00359-16
Nishimura, Y. et al. ViPTree: the viral proteomic tree server. Bioinformatics 33, 2379–2380 (2017).
pubmed: 28379287
doi: 10.1093/bioinformatics/btx157
Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).
doi: 10.1038/s41587-019-0100-8
Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and bacteria. PeerJ 5, e3243 (2017).
pubmed: 28480138
pmcid: 5419219
doi: 10.7717/peerj.3243
Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).
pubmed: 30556814
doi: 10.1038/nbt.4306
Simmonds, P. et al. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).
pubmed: 28134265
doi: 10.1038/nrmicro.2016.177
Baas-Becking, L. G. M. Geobiologie of Inleiding tot de Milieukunde (Van Stockum & Zoon, 1934).
Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).
pubmed: 31730851
pmcid: 6912166
doi: 10.1016/j.cell.2019.10.008
Jia, Y., Shan, J., Millard, A., Clokie, M. R. & Mann, N. H. Light-dependent adsorption of photosynthetic cyanophages to Synechococcus sp. WH7803. FEMS Microbiol. Lett. 310, 120–126 (2010).
pubmed: 20704597
doi: 10.1111/j.1574-6968.2010.02054.x
Ribalet, F. et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc. Natl Acad. Sci. USA 112, 8008–8012 (2015).
pubmed: 26080407
doi: 10.1073/pnas.1424279112
pmcid: 4491802
Yoshida, T. et al. Locality and diel cycling of viral production revealed by a 24 h time course cross-omics analysis in a coastal region of Japan. ISME J. 12, 1287–1295 (2018).
pubmed: 29382948
pmcid: 5932082
doi: 10.1038/s41396-018-0052-x
Fridman, S. et al. A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells. Nat. Microbiol. 2, 1350–1357 (2017).
pubmed: 28785078
doi: 10.1038/s41564-017-0002-9
Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424, 741 (2003).
pubmed: 12917674
doi: 10.1038/424741a
Sullivan, M. B. et al. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 4, e234 (2006).
pubmed: 16802857
pmcid: 1484495
doi: 10.1371/journal.pbio.0040234
Hurwitz, B. L., Hallam, S. J. & Sullivan, M. B. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 14, R123 (2013).
pubmed: 24200126
pmcid: 4053976
doi: 10.1186/gb-2013-14-11-r123
Howard-Varona, C. et al. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus. ISME J. 11, 284–295 (2017).
pubmed: 27187794
doi: 10.1038/ismej.2016.81
Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016). This study integrates Tara Oceans data across organismal size classes from epipelagic depths, revealing that unexpected taxa can predict the downward export of carbon by biological processes in subtropical, nutrient-depleted oceans.
pubmed: 26863193
pmcid: 4851848
doi: 10.1038/nature16942
Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).
pubmed: 31896786
pmcid: 7082346
doi: 10.1038/s41396-019-0580-z
Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea - viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).
doi: 10.2307/1313569
Hurwitz, B. L., Brum, J. R. & Sullivan, M. B. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean virome. ISME J. 9, 472–484 (2015).
pubmed: 25093636
doi: 10.1038/ismej.2014.143
Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).
pubmed: 29371626
pmcid: 5785536
doi: 10.1038/s41467-017-02342-1
Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013).
pubmed: 23575371
pmcid: 3749498
doi: 10.1038/ismej.2013.59
Lescot, M. et al. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages. ISME J. 10, 1134–1146 (2016).
pubmed: 26613339
doi: 10.1038/ismej.2015.192
Villar, E. et al. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 348, 1261447 (2015).
pubmed: 25999514
doi: 10.1126/science.1261447
Li, Y. et al. The earth is small for “Leviathans”: long distance dispersal of giant viruses across aquatic environments. Microbes Environ. 34, 334–339 (2019).
pubmed: 31378760
pmcid: 6759346
doi: 10.1264/jsme2.ME19037
Mihara, T. et al. Taxon richness of “Megaviridae” exceeds those of bacteria and archaea in the ocean. Microbes Environ. 33, 162–171 (2018).
pubmed: 29806626
pmcid: 6031395
doi: 10.1264/jsme2.ME17203
von Dassow, P. et al. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. ISME J. 9, 1365–1377 (2015).
doi: 10.1038/ismej.2014.221
Clerissi, C. et al. Deep sequencing of amplified Prasinovirus and host green algal genes from an Indian Ocean transect reveals interacting trophic dependencies and new genotypes. Environ. Microbiol. Rep. 7, 979–989 (2015).
pubmed: 26472079
doi: 10.1111/1758-2229.12345
Clerissi, C. et al. Unveiling of the diversity of prasinoviruses (Phycodnaviridae) in marine samples by using high-throughput sequencing analyses of PCR-amplified DNA polymerase and major capsid protein genes. Appl. Environ. Microbiol. 80, 3150–3160 (2014).
pubmed: 24632251
pmcid: 4018913
doi: 10.1128/AEM.00123-14
Clerissi, C. et al. Prasinovirus distribution in the northwest Mediterranean Sea is affected by the environment and particularly by phosphate availability. Virology 466–467, 146–157 (2014).
pubmed: 25109909
doi: 10.1016/j.virol.2014.07.016
Li, Y. et al. Degenerate PCR primers to reveal the diversity of giant viruses in coastal waters. Viruses 10 (2018).
Blanc-Mathieu, R. et al. Viruses of the eukaryotic plankton are predicted to increase carbon export efficiency in the global sunlit ocean. Preprint at bioRxiv https://doi.org/10.1101/710228 (2019).
Bolduc, B., Youens-Clark, K., Roux, S., Hurwitz, B. L. & Sullivan, M. B. iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. ISME J. 11, 7–14 (2017).
pubmed: 27420028
doi: 10.1038/ismej.2016.89
Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).
pubmed: 26938550
pmcid: 4810256
doi: 10.3390/v8030066
Steward, G. F. et al. Are we missing half of the viruses in the ocean? ISME J. 7, 672–679 (2013).
pubmed: 23151645
doi: 10.1038/ismej.2012.121
Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083.e21 (2019).
pubmed: 31730850
pmcid: 6912165
doi: 10.1016/j.cell.2019.10.014
Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015). This study catalogues 40 million ocean microbial genes and shows temperature to be a main driver of open-ocean microbial community composition in the epipelagic zone at a global scale.
pubmed: 25999513
doi: 10.1126/science.1261359
Kultima, J. R. et al. MOCAT: a metagenomics assembly and gene prediction toolkit. PLoS One 7, e47656 (2012).
pubmed: 23082188
pmcid: 3474746
doi: 10.1371/journal.pone.0047656
Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).
pubmed: 24997786
doi: 10.1038/nbt.2942
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
pubmed: 20203603
pmcid: 3779803
doi: 10.1038/nature08821
DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).
pubmed: 16439655
doi: 10.1126/science.1120250
Giovannoni, S. J. & Stingl, U. Molecular diversity and ecology of microbial plankton. Nature 437, 343–348 (2005).
pubmed: 16163344
doi: 10.1038/nature04158
Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006).
pubmed: 16938845
doi: 10.1073/pnas.0602399103
pmcid: 1559760
Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10, 1014 (2019).
pubmed: 30833550
pmcid: 6399450
doi: 10.1038/s41467-019-08844-4
Farrant, G. K. et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc. Natl Acad. Sci. USA 113, E3365–E3374 (2016).
pubmed: 27302952
doi: 10.1073/pnas.1524865113
pmcid: 4914166
Grebert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl Acad. Sci. USA 115, E2010–E2019 (2018).
pubmed: 29440402
doi: 10.1073/pnas.1717069115
pmcid: 5834698
Yelton, A. P. et al. Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME J. 10, 2946–2957 (2016).
pubmed: 27137127
pmcid: 5148188
doi: 10.1038/ismej.2016.64
Royo-Llonch, M. et al. Exploring microdiversity in novel Kordia sp. (Bacteroidetes) with proteorhodopsin from the tropical Indian Ocean via single amplified genomes. Front. Microbiol. 8, 1317 (2017).
pubmed: 28790980
pmcid: 5525439
doi: 10.3389/fmicb.2017.01317
Royo-Llonch, M., Sánchez, P., González, J. M., Pedrós-Alió, C. & Acinas, S. G. Ecological and functional capabilities of an uncultured Kordia sp. Syst. Appl. Microbiol. 43, 126045 (2020).
pubmed: 31831198
doi: 10.1016/j.syapm.2019.126045
Cabello, A. M. et al. Global distribution and vertical patterns of a prymnesiophyte-cyanobacteria obligate symbiosis. ISME J. 10, 693–706 (2016).
pubmed: 26405830
doi: 10.1038/ismej.2015.147
Cornejo-Castillo, F. M. et al. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nat. Commun. 7, 11071 (2016).
pubmed: 27002549
pmcid: 4804200
doi: 10.1038/ncomms11071
Cornejo-Castillo, F. M. et al. UCYN-A3, a newly characterized open ocean sublineage of the symbiotic N2 -fixing cyanobacterium Candidatus Atelocyanobacterium thalassa. Environ. Microbiol. 21, 111–124 (2019).
pubmed: 30255541
doi: 10.1111/1462-2920.14429
Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).
pubmed: 29891866
pmcid: 6792437
doi: 10.1038/s41564-018-0176-9
Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018). This study exemplifies the use of Tara Oceans data to formulate new hypotheses by reconstructing genomes that support a mitochondrial origin before the divergence of all Alphaproteobacteria sampled to date.
pubmed: 29695865
doi: 10.1038/s41586-018-0059-5
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
pubmed: 28894102
doi: 10.1038/s41564-017-0012-7
Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).
pubmed: 29337314
pmcid: 5769542
doi: 10.1038/sdata.2017.203
Pushkarev, A. et al. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558, 595–599 (2018).
pubmed: 29925949
doi: 10.1038/s41586-018-0225-9
Oppermann, J. et al. MerMAIDs: a family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nat. Commun. 10, 3315 (2019).
pubmed: 31346176
pmcid: 6658528
doi: 10.1038/s41467-019-11322-6
Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).
pubmed: 27634532
doi: 10.1126/science.aaf4507
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
pubmed: 29784790
doi: 10.1073/pnas.1711842115
pmcid: 6016768
Caron, D. A., Countway, P. D., Jones, A. C., Kim, D. Y. & Schnetzer, A. Marine protistan diversity. Ann. Rev. Mar. Sci. 4, 467–493 (2012).
pubmed: 22457984
doi: 10.1146/annurev-marine-120709-142802
Colin, S. et al. Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. eLife 6, e26066 (2017).
pubmed: 29087936
pmcid: 5663481
doi: 10.7554/eLife.26066
Decelle, J. et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).
pubmed: 25740460
doi: 10.1111/1755-0998.12401
Guillou, L. et al. The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).
pubmed: 23193267
doi: 10.1093/nar/gks1160
Seeleuthner, Y. et al. Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat. Commun. 9, 310 (2018).
pubmed: 29358710
pmcid: 5778133
doi: 10.1038/s41467-017-02235-3
Sieracki, M. E. et al. Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems. Sci. Rep. 9, 6025 (2019).
pubmed: 30988337
pmcid: 6465268
doi: 10.1038/s41598-019-42487-1
de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015). This study surveys the eukaryotic diversity of ocean plankton from the smallest protists to millimetre-sized animals by 18S ribosomal RNA gene amplicon sequencing, revealing 150,000 taxonomic groups dominated by protistan parasites and symbiotic hosts.
pubmed: 25999516
doi: 10.1126/science.1261605
Flegontova, O. et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065 (2016).
pubmed: 27875689
doi: 10.1016/j.cub.2016.09.031
Decelle, J. et al. Worldwide occurrence and activity of the reef-building coral symbiont Symbiodinium in the open ocean. Curr. Biol. 28, 3625–3633 e3623 (2018).
pubmed: 30416058
doi: 10.1016/j.cub.2018.09.024
Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015). This study evaluates the effect of abiotic and biotic factors on organismal interactions among bacteria, archaea, eukaryotes and viruses, emphasizing the role of grazing, pathogenicity and parasitism as predictors of plankton community structure.
pubmed: 25999517
doi: 10.1126/science.1262073
Vincent, F. J. et al. The epibiotic life of the cosmopolitan diatom Fragilariopsis doliolus on heterotrophic ciliates in the open ocean. ISME J. 12, 1094–1108 (2018).
pubmed: 29348580
pmcid: 5864193
doi: 10.1038/s41396-017-0029-1
Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, E1516–E1525 (2016).
pubmed: 26929361
doi: 10.1073/pnas.1509523113
pmcid: 4801293
Le Bescot, N. et al. Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environ. Microbiol. 18, 609–626 (2016).
pubmed: 26337598
doi: 10.1111/1462-2920.13039
Lopes Dos Santos, A. et al. Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters. ISME J. 11, 512–528 (2017).
pubmed: 27779617
doi: 10.1038/ismej.2016.120
Gimmler, A., Korn, R., de Vargas, C., Audic, S. & Stoeck, T. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Sci. Rep. 6, 33555 (2016).
pubmed: 27633177
pmcid: 5025661
doi: 10.1038/srep33555
Beaugrand, G., Luczak, C., Goberville, E. & Kirby, R. R. Marine biodiversity and the chessboard of life. PLoS One 13, e0194006 (2018).
pubmed: 29565983
pmcid: 5864006
doi: 10.1371/journal.pone.0194006
Biard, T. et al. Biogeography and diversity of Collodaria (Radiolaria) in the global ocean. ISME J. 11, 1331–1344 (2017).
pubmed: 28338675
pmcid: 5437347
doi: 10.1038/ismej.2017.12
Del Campo, J. et al. Assessing the diversity and distribution of apicomplexans in host and free-living environments using high-throughput amplicon data and a phylogenetically informed reference framework. Front. Microbiol. 10, 2373 (2019).
pubmed: 31708883
pmcid: 6819320
doi: 10.3389/fmicb.2019.02373
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
pubmed: 28731476
pmcid: 5702726
doi: 10.1038/ismej.2017.119
Foster, Z. S., Sharpton, T. J. & Grunwald, N. J. Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).
pubmed: 28222096
pmcid: 5340466
doi: 10.1371/journal.pcbi.1005404
Pierella Karlusich, J. J., Ibarbalz, F. M. & Bowler, C. Phytoplankton in the Tara Ocean. Annu. Rev. Mar. Sci. 12, 233–265 (2020).
doi: 10.1146/annurev-marine-010419-010706
Leblanc, K. et al. Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat. Commun. 9, 953 (2018).
pubmed: 29507291
pmcid: 5838239
doi: 10.1038/s41467-018-03376-9
Treguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).
doi: 10.1038/s41561-017-0028-x
Rabosky, D. L. & Sorhannus, U. Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457, 183–186 (2009).
pubmed: 19129846
doi: 10.1038/nature07435
Azaele, S., Pigolotti, S., Banavar, J. R. & Maritan, A. Dynamical evolution of ecosystems. Nature 444, 926–928 (2006).
pubmed: 17167485
doi: 10.1038/nature05320
Ferriere, R. & Cazelles, B. Universal power laws govern intermittent rarity in communities of interacting species. Ecology 80, 1505–1521 (1999).
doi: 10.1890/0012-9658(1999)080[1505:UPLGIR]2.0.CO;2
Gawryluk, R. M. R. et al. Morphological identification and single-cell genomics of marine diplonemids. Curr. Biol. 26, 3053–3059 (2016).
pubmed: 27875688
doi: 10.1016/j.cub.2016.09.013
Mordret, S. et al. The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.). ISME J. 10, 1424–1436 (2016).
pubmed: 26684730
doi: 10.1038/ismej.2015.211
Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).
pubmed: 27096373
doi: 10.1038/nature17652
Vannier, T. et al. Survey of the green picoalga Bathycoccus genomes in the global ocean. Sci. Rep. 6, 37900 (2016).
pubmed: 27901108
pmcid: 5128809
doi: 10.1038/srep37900
Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).
pubmed: 27814033
doi: 10.1146/annurev-marine-010814-015924
Roullier, F. et al. Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone. Biogeosciences 11, 4541–4557 (2014).
doi: 10.5194/bg-11-4541-2014
Corse, E. et al. Phylogenetic analysis of Thecosomata Blainville, 1824 (holoplanktonic opisthobranchia) using morphological and molecular data. PLoS One 8, e59439 (2013).
pubmed: 23593138
pmcid: 3625178
doi: 10.1371/journal.pone.0059439
Gasmi, S. et al. Evolutionary history of Chaetognatha inferred from molecular and morphological data: a case study for body plan simplification. Front. Zool. 11, 84 (2014).
pubmed: 25473413
pmcid: 4254178
doi: 10.1186/s12983-014-0084-7
Madoui, M. A. et al. New insights into global biogeography, population structure and natural selection from the genome of the epipelagic copepod Oithona. Mol. Ecol. 26, 4467–4482 (2017).
pubmed: 28636804
doi: 10.1111/mec.14214
Arif, M. et al. Discovering millions of plankton genomic markers from the Atlantic Ocean and the Mediterranean Sea. Mol. Ecol. Resour. 19, 526–535 (2019).
pubmed: 30575285
doi: 10.1111/1755-0998.12985
Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Global Biogeochem. Cycles 33, 391–419 (2019).
doi: 10.1029/2018GB006022
Busseni, G. et al. Meta-omics reveals genetic flexibility of diatom nitrogen transporters in response to environmental changes. Mol. Biol. Evol. 36, 2522–2535 (2019).
pmcid: 6805229
doi: 10.1093/molbev/msz157
D’Alelio, D. et al. Modelling the complexity of plankton communities exploiting omics potential: From present challenges to an integrative pipeline. Curr. Opin. Syst. Biol. 13, 68–74 (2019).
doi: 10.1016/j.coisb.2018.10.003
Whittaker, R. H. Evolution and measurement of species diversity. Taxon 21, 213–251 (1972).
doi: 10.2307/1218190
Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. USA 105, 7774–7778 (2008).
pubmed: 18509059
doi: 10.1073/pnas.0803070105
pmcid: 2409396
Raes, E. J. et al. Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. Proc. Natl Acad. Sci. USA 115, E8266–E8275 (2018).
pubmed: 30108147
doi: 10.1073/pnas.1719335115
pmcid: 6126737
Capotondi, A. et al. Observational needs supporting marine ecosystems modeling and forecasting: from the global ocean to regional and coastal systems. Front. Mar. Sci. 6, 623 (2019).
doi: 10.3389/fmars.2019.00623
Lombard, F. et al. Globally consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 6, 196 (2019).
doi: 10.3389/fmars.2019.00196
Ten Hoopen, P. et al. Marine microbial biodiversity, bioinformatics and biotechnology (M2B3) data reporting and service standards. Stand. Genomic Sci. 10, 20 (2015).
pubmed: 26203332
pmcid: 4511511
doi: 10.1186/s40793-015-0001-5
Gorsky, G. et al. Expanding Tara Oceans protocols for underway, ecosystemic sampling of the ocean-atmosphere interface during Tara Pacific expedition (2016–2018). Front. Mar. Sci. 6, 750 (2019).
doi: 10.3389/fmars.2019.00750
Planes, S. et al. The Tara Pacific expedition — a pan-ecosystemic approach of the “-omics” complexity of coral reef holobionts across the Pacific Ocean. PLoS Biol. 17, e3000483 (2019).
pubmed: 31545807
pmcid: 6776362
doi: 10.1371/journal.pbio.3000483
Bolhuis, H. et al. Atlantic Ocean Research Alliance — marine microbiome roadmap (AORA, 2020).
Cram, J. A. et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 9, 563–580 (2015).
pubmed: 25203836
doi: 10.1038/ismej.2014.153
D’Alcala, M. R. et al. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Sci. Mar. 68, 65–83 (2004).
doi: 10.3989/scimar.2004.68s165
Gilbert, J. A. et al. The taxonomic and functional diversity of microbes at a temperate coastal site: a ‘multi-omic’ study of seasonal and diel temporal variation. PLoS One 5, e15545 (2010).
pubmed: 21124740
pmcid: 2993967
doi: 10.1371/journal.pone.0015545
Romagnan, J. B. et al. Comprehensive model of annual plankton succession based on the whole-plankton time series approach. PLoS One 10, e0119219 (2015).
pubmed: 25780912
pmcid: 4363592
doi: 10.1371/journal.pone.0119219
Gasol, J. M. et al. ICES phytoplankton and microbial plankton status report 2009/2010 (eds O’Brien, T. D., Li, W. K. W. & Morán, X. A. G.) 138–141 (ICES, 2012).
Martin-Platero, A. M. et al. High resolution time series reveals cohesive but short-lived communities in coastal plankton. Nat. Commun. 9, 266 (2018).
pubmed: 29348571
pmcid: 5773528
doi: 10.1038/s41467-017-02571-4
Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).
pubmed: 29531367
doi: 10.1038/s41564-018-0128-4
Marx, V. When microbiologists plunge into the ocean. Nat. Methods 17, 133–136 (2020).
pubmed: 31988521
doi: 10.1038/s41592-020-0736-9
Buttigieg, P. L. et al. Marine microbes in 4D-using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr. Opin. Microbiol. 43, 169–185 (2018).
pubmed: 29477022
doi: 10.1016/j.mib.2018.01.015
Shneider, A. M. Four stages of a scientific discipline; four types of scientist. Trends Biochem. Sci. 34, 217–223 (2009).
pubmed: 19362484
doi: 10.1016/j.tibs.2009.02.002
Karl, D. M. A sea of change: biogeochemical variability in the North Pacific Subtropical Gyre. Ecosystems 2, 181–214 (1999).
doi: 10.1007/s100219900068
Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019). This review article provides a consensus statement, the ‘microbiologists’ warning to humanity’, documenting how microorganisms will affect and will be affected by climate change.
pubmed: 31213707
pmcid: 7136171
doi: 10.1038/s41579-019-0222-5
Bork, P. et al. Tara Oceans studies plankton at planetary scale. Introduction. Science 348, 873 (2015).
pubmed: 25999501
doi: 10.1126/science.aac5605
Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ. Microbiol. 16, 2659–2671 (2014).
pubmed: 24102695
doi: 10.1111/1462-2920.12250
Nakayama, T. et al. Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host. Proc. Natl Acad. Sci. USA 116, 15973–15978 (2019).
pubmed: 31235587
doi: 10.1073/pnas.1902538116
pmcid: 6689939
Probert, I. et al. Brandtodinium gen. nov. and B. nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians. J. Phycol. 50, 388–399 (2014).
pubmed: 26988195
doi: 10.1111/jpy.12174
Decelle, J., Colin, S. & Foster, R. A. in Marine Protists: Diversity and Dynamics (eds Ohtsuka, S. et al.) 465–500 (Springer, 2015).