High Circular Polarized Nanolaser with Chiral Gammadion Metal Cavity.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
12 May 2020
Historique:
received: 16 09 2019
accepted: 16 12 2019
entrez: 14 5 2020
pubmed: 14 5 2020
medline: 14 5 2020
Statut: epublish

Résumé

We demonstrate a circularly polarized laser with the metal-gallium-nitride gammadion nanocavities. The ultraviolet lasing signal was observed with the high circular dichroism at room temperature under pulsed optical pump conditions. Without external magnetism which breaks the time-reversal symmetry to favor optical transitions of a chosen handedness, the coherent outputs of these chiral nanolasers show a dissymmetry factor as high as 1.1. The small footprint of these lasers are advantageous for applications related to circularly polarized photons in future integrated systems, in contrast to the bulky setup of linearly-polarized lasers and quarter-wave plates.

Identifiants

pubmed: 32398835
doi: 10.1038/s41598-020-64836-1
pii: 10.1038/s41598-020-64836-1
pmc: PMC7217972
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7880

Références

Farshchi, R., Ramsteiner, M., Herfort, J., Tahraoui, A. & Grahn, H. T. Optical communication of spin information between light emitting diodes. Applied Physics Letters 98, 162508 (2011).
doi: 10.1063/1.3582917
Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–60 (2006).
doi: 10.1038/nature05136
Kelly, S. M. & Price, N. C. The Use of Circular Dichroism in the Investigation of Protein Structure and Function. Curr Protein Pept Sc 1, 349–384 (2000).
doi: 10.2174/1389203003381315
Richtberg, S. & Girwidz, R. Use of Linear and Circular Polarization: The Secret LCD Screen and 3D Cinema. The Physics Teacher 55, 406–408 (2017).
doi: 10.1119/1.5003740
Chen, J. Y., Wong, T. M., Chang, C. W., Dong, C. Y. & Chen, Y. F. Self-polarized spin-nanolasers. Nature nanotechnology 9, 845–50 (2014).
doi: 10.1038/nnano.2014.195
Nishizawa, N., Nishibayashi, K. & Munekata, H. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes. Proceedings of the National Academy of Sciences 114, 1783–1788 (2017).
Bhattacharya, A. et al. Room-Temperature Spin Polariton Diode Laser. Physical review letters 119, 067701 (2017).
doi: 10.1103/PhysRevLett.119.067701
Wang, X.-Y. et al. Chiral-reversing vortex radiation from a single emitter by eigenstates phase locking. arXiv:1707.01055 [physics] (2017).
Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).
doi: 10.1126/science.aaf8533
Chen, L. et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn) As to 200 K via nanostructure engineering. Nano letters 11, 2584–2589 (2011).
doi: 10.1021/nl201187m
Damen, T. C., Via, L., Cunningham, J. E., Shah, J. & Sham, L. J. Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells. Physical review letters 67, 3432 (1991).
doi: 10.1103/PhysRevLett.67.3432
Hilton, D. J. & Tang, C. L. Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs. Physical review letters 89, 146601 (2002).
doi: 10.1103/PhysRevLett.89.146601
Nishizawa, N., Aoyama, M., Roca, R. C., Nishibayashi, K. & Munekata, H. Arbitrary helicity control of circularly polarized light from lateral-type spin-polarized light-emitting diodes at room temperature. Applied Physics Express 11, 053003 (2018).
doi: 10.7567/APEX.11.053003
Maksimov, A. A. et al. Circularly polarized light emission from chiral spatially-structured planar semiconductor microcavities. Physical Review B 89, 045316 (2014).
doi: 10.1103/PhysRevB.89.045316
Konishi, K. et al. Circularly polarized light emission from semiconductor planar chiral nanostructures. Physical Review Letters 106, 1–4 (2011).
doi: 10.1103/PhysRevLett.106.057402
Takahashi, S., Oono, S., Iwamoto, S., Hatsugai, Y. & Arakawa, Y. Circularly Polarized Topological Edge States Derived from Optical Weyl Points in Semiconductor-Based Chiral Woodpile Photonic Crystals. Journal of the Physical Society of Japan 87, 123401 (2018).
doi: 10.7566/JPSJ.87.123401
Iftime, G., Labarthet, F. L., Natansohn, A. & Rochon, P. Control of Chirality of an Azobenzene Liquid Crystalline Polymer with Circularly Polarized Light. Journal of the American Chemical Society 122, 12646–12650 (2000).
doi: 10.1021/ja001244m
Lobanov, S. V. et al. Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slabs. Physical Review B 92, 205309 (2015).
doi: 10.1103/PhysRevB.92.205309
Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically Switchable Chiral Light-Emitting Transistor. Science 344, 725–728 (2014).
doi: 10.1126/science.1251329
Maksimov, A. A. et al. Polarization, spectral, and spatial emission characteristics of chiral semiconductor nanostructures. Jetp Lett 106, 643–647 (2017).
doi: 10.1134/S002136401722012X
Jimenez, J. et al. Chiral Organic Dyes Endowed with Circularly Polarized Laser Emission. J Phys Chem C Nanomater Interfaces 121, 5287–5292 (2017).
doi: 10.1021/acs.jpcc.7b00654
Hsu, F., Xie, W., Lee, Y.-S., Lin, S.-D. & Lai, C.-W. Ultrafast spin-polarized lasing in a highly photoexcited semiconductor microcavity at room temperature. Physical Review B 91, 195312 (2015).
doi: 10.1103/PhysRevB.91.195312
Liao, W.-C. et al. Optimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature. Scientific Reports 6, 26578 (2016).
doi: 10.1038/srep26578
Iba, S., Koh, S., Ikeda, K. & Kawaguchi, H. Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells. Applied Physics Letters 98, 081113 (2011).
doi: 10.1063/1.3554760
Holub, M. & Bhattacharya, P. Spin-polarized light-emitting diodes and lasers. Journal of Physics D: Applied Physics 40, R179–R203 (2007).
doi: 10.1088/0022-3727/40/11/R01
McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. & Logan, R. A. Whispering-gallery mode microdisk lasers. Applied Physics Letters 60, 289–291 (1992).
doi: 10.1063/1.106688
Painter, O. Two-Dimensional Photonic Band-Gap Defect Mode Laser. Science 284, 1819–1821 (1999).
doi: 10.1126/science.284.5421.1819
Huang, M. H. Room-Temperature Ultraviolet Nanowire Nanolasers. Science 292, 1897–1899 (2001).
doi: 10.1126/science.1060367
Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nature Photonics 8, 406–411 (2014).
doi: 10.1038/nphoton.2014.75
Lu, L. et al. 120 μW peak output power from edge-emitting photonic crystal double-heterostructure nanocavity lasers. Appl. Phys. Lett. 94, 111101 (2009).
Wu, X. et al. Hybrid photon-plasmon nanowire lasers. Nano letters 13, 5654–9 (2013).
doi: 10.1021/nl403325j
Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology 8, 506–511 (2013).
doi: 10.1038/nnano.2013.99
Yang, A. et al. Real-time tunable lasing from plasmonic nanocavity arrays. Nature Communications 6, 6939–6939 (2015).
doi: 10.1038/ncomms7939
Liang Feng, Z. J. W. Single-mode laser by parity-time symmetry breaking. Science 346, 972–75 (2014).
doi: 10.1126/science.1258479
Lu, Y.-J. et al. Plasmonic Nanolaser Using Epitaxially Grown Silver Film. Science 337, 450–453 (2012).
doi: 10.1126/science.1223504
Ding, K. & Ning, C. Z. Metallic subwavelength-cavity semiconductor nanolasers. Light: Science & Applications 1, e20 (2012).
doi: 10.1038/lsa.2012.20
Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photonics 1, 589–594 (2007).
doi: 10.1038/nphoton.2007.171
Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nature Photonics 4, 395–399 (2010).
doi: 10.1038/nphoton.2010.88
Kwon, S. H. et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano letters 10, 3679–83 (2010).
doi: 10.1021/nl1021706
Kim, M. W. et al. Subwavelength Surface Plasmon Optical Cavity–Scaling, Amplification, and Coherence. IEEE Journal of Selected Topics in Quantum Electronics 15, 1521 (2009).
doi: 10.1109/JSTQE.2009.2020179
Lu, C.-Y., Chang, S.-W., Chuang, S. L., Germann, T. D. & Bimberg, D. Metal-cavity surface-emitting microlaser at room temperature. Applied Physics Letters 96, 251101 (2010).
doi: 10.1063/1.3455316
Chen, K.-J. et al. Lasing characteristics of a metal-coated GaN shallow grating structure at room temperature. IEEE Journal of Selected Topics in Quantum Electronics 21, 475–479 (2015).
doi: 10.1109/JSTQE.2014.2336536
Robinson, J. T., Manolatou, C., Chen, L. & Lipson, M. Ultrasmall mode volumes in dielectric optical microcavities. Physical review letters 95, 143901 (2005).
doi: 10.1103/PhysRevLett.95.143901

Auteurs

Cheng-Li Yu (CL)

Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan.

Yu-Hao Hsiao (YH)

Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan.

Chiao-Yun Chang (CY)

Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.

Pi-Ju Cheng (PJ)

Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.

Hsiang-Ting Lin (HT)

Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.

Ming-Sheng Lai (MS)

Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan.

Hao-Chung Kuo (HC)

Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan.

Shu-Wei Chang (SW)

Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan.

Min-Hsiung Shih (MH)

Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan. mhshih@gate.sinica.edu.tw.
Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan. mhshih@gate.sinica.edu.tw.
Department of Photonics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan. mhshih@gate.sinica.edu.tw.

Classifications MeSH