A critical review of the current technologies in wastewater treatment plants by using hydrodynamic cavitation process: principles and applications.

Computational fluid dynamics Hydrodynamic cavitation Modeling Pollutant degradation Wastewater treatment

Journal

Journal of environmental health science & engineering
ISSN: 2052-336X
Titre abrégé: J Environ Health Sci Eng
Pays: England
ID NLM: 101613643

Informations de publication

Date de publication:
Jun 2020
Historique:
received: 20 02 2019
accepted: 14 01 2020
entrez: 14 5 2020
pubmed: 14 5 2020
medline: 14 5 2020
Statut: epublish

Résumé

In the last decade, hydrodynamic cavitation (HC) was increasingly used in the field of wastewater treatment. Due to its oxidative capability, HC was applied to treat aqueous effluents polluted by organic, toxic and bio-refractory contaminants, whereas its mechanical and chemical effects have allowed to disintegrate cells of microorganisms in biological applications. Due to their geometries, HC can be detected in some reactors, in which a variation of hydraulic parameters in the fluid such as flow pressure and flow velocity is induced. HC process involves the formation, growth, implosion and subsequent collapse of cavities, occurring in a very short period of time and releasing large magnitudes of power. In this paper, the vast literature on HC is critically reviewed, focusing on the basic principles behind it, in terms of process definition and analysis of governing mechanisms of both HC generation and pollutants degradation. The influence of various parameters on HC effectiveness was assessed, considering fluid properties, construction features of HC devices and technological aspects of processes. The synergetic effect of HC combined with chemicals or other techniques was discussed. An overview of the main devices used for HC generation and different existing methods to evaluate the cavitation effectiveness was provided. Knowledge buildup and optimization for such complex systems from mathematical modeling was highlighted.

Identifiants

pubmed: 32399243
doi: 10.1007/s40201-020-00444-5
pii: 444
pmc: PMC7203374
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

311-333

Informations de copyright

© Springer Nature Switzerland AG 2020.

Déclaration de conflit d'intérêts

Declaration of interestsThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Références

Ultrason Sonochem. 2015 Jan;22:272-7
pubmed: 24924259
Ultrason Sonochem. 2015 Sep;26:408-414
pubmed: 25596776
Ultrason Sonochem. 2008 Jan;15(1):49-54
pubmed: 17368951
Ultrason Sonochem. 2015 Jul;25:51-9
pubmed: 25199444
Ultrason Sonochem. 2017 Jan;34:51-59
pubmed: 27773276
Ultrason Sonochem. 2016 Mar;29:577-88
pubmed: 26515938
Water Sci Technol. 2008;57(1):131-7
pubmed: 18192750
Bioresour Technol. 2009 Jun;100(12):3161-6
pubmed: 19246193
Ultrason Sonochem. 2013 Nov;20(6):1450-5
pubmed: 23618849
Environ Sci Technol. 2018 Apr 3;52(7):4313-4323
pubmed: 29518313
Ultrason Sonochem. 2012 May;19(3):532-9
pubmed: 22154205
Ultrason Sonochem. 2019 Dec;59:104750
pubmed: 31473425
J Environ Manage. 2019 Jul 15;242:210-219
pubmed: 31039530
Environ Sci Pollut Res Int. 2015 May;22(10):7258-70
pubmed: 25318422
Bioresour Technol. 2018 Jan;247:599-609
pubmed: 28982090
J Environ Sci (China). 2015 Nov 1;37:139-53
pubmed: 26574097
Bioresour Technol. 2008 Dec;99(18):9029-31
pubmed: 18490152
Ultrason Sonochem. 2008 Apr;15(4):357-363
pubmed: 17981070
Ultrason Sonochem. 2011 Mar;18(2):494-500
pubmed: 20826108
Environ Sci Technol. 2005 May 15;39(10):3409-20
pubmed: 15952344
Ultrason Sonochem. 2011 Jan;18(1):1-18
pubmed: 20471901
Ultrason Sonochem. 2017 Jul;37:192-202
pubmed: 28427623
Ultrason Sonochem. 2010 Jun;17(5):845-52
pubmed: 20362487
Environ Health Perspect. 1985 Dec;64:233-52
pubmed: 3007091
Ultrason Sonochem. 2014 May;21(3):1075-82
pubmed: 24360991
Ultrason Sonochem. 2018 Dec;49:241-248
pubmed: 30122469
Ultrason Sonochem. 2017 Mar;35(Pt A):489-501
pubmed: 27838222
Ultrason Sonochem. 2018 Apr;42:609-618
pubmed: 29429709
Ultrason Sonochem. 2017 Jan;34:183-194
pubmed: 27773234
Ultrason Sonochem. 2016 May;30:79-86
pubmed: 26639635
Ultrason Sonochem. 2016 Jul;31:362-70
pubmed: 26964961
Ultrason Sonochem. 2016 Sep;32:18-30
pubmed: 27150741
J Hazard Mater. 2017 Aug 5;335:188-196
pubmed: 28458080
Ultrason Sonochem. 2018 May;43:156-165
pubmed: 29555271
Ultrason Sonochem. 2002 Jul;9(3):123-31
pubmed: 12154685
Appl Biochem Biotechnol. 2018 Apr;184(4):1200-1218
pubmed: 28980222
Ultrason Sonochem. 2013 Nov;20(6):1442-9
pubmed: 23714332
Ultrason Sonochem. 2018 Jan;40(Pt A):567-576
pubmed: 28946459
J Hazard Mater. 2009 Sep 30;169(1-3):486-91
pubmed: 19411137
Ultrason Sonochem. 2014 May;21(3):1213-21
pubmed: 24286658
Ultrason Sonochem. 2016 Jul;31:371-82
pubmed: 26964962
Ultrason Sonochem. 2013 Jul;20(4):1104-12
pubmed: 23352585
J Am Chem Soc. 2007 May 9;129(18):6031-6
pubmed: 17439213
J Hazard Mater. 2009 Jan 15;161(1):202-7
pubmed: 18462876

Auteurs

Giuseppe Mancuso (G)

1Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, viale Giuseppe Fanin 50, 40127 Bologna, Italy.

Michela Langone (M)

2Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy.

Gianni Andreottola (G)

2Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy.

Classifications MeSH