Interactive effects of elevated CO
CO2
climate change
drought
functional groups
global change
grassland
photosynthesis: carbon reactions
stomata
Journal
Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
10
02
2020
revised:
04
05
2020
accepted:
05
05
2020
pubmed:
14
5
2020
medline:
1
5
2021
entrez:
14
5
2020
Statut:
ppublish
Résumé
Global changes can interact to affect photosynthesis and thus ecosystem carbon capture, yet few multi-factor field studies exist to examine such interactions. Here, we evaluate leaf gas exchange responses of five perennial grassland species from four functional groups to individual and interactive global changes in an open-air experiment in Minnesota, USA, including elevated CO
Substances chimiques
Soil
0
Carbon Dioxide
142M471B3J
Nitrogen
N762921K75
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1862-1878Informations de copyright
© 2020 John Wiley & Sons Ltd.
Références
Adair, C. E., Reich, P. B., Trost, J. J., & Hobbie, S. E. (2011). Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil moisture. Global Change Biology, 17(12), 3546-3563.
Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351-372.
Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant, Cell & Environment, 30(3), 258-270.
Albert, K., Ro-Poulsen, H., Mikkelsen, T., Michelsen, A., van der Linden, L., & Beier, C. (2011a). Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant, Cell & Environment, 34(7), 1207-1222.
Albert, K., Ro-Poulsen, H., Mikkelsen, T., Michelsen, A., van der Linden, L., & Beier, C. (2011b). Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. Journal of Experimental Botany, 62(12), 4253-4266.
Arend, M., Brem, A., Kuster, T. M., & Günthardt-Goerg, M. S. (2013). Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature. Plant Biology, 15, 169-176.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300.
Bernacchi, C., Singsaas, E., Pimentel, C., Portis, A., Jr., & Long, S. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell & Environment, 24(2), 253-259.
Berry, J., & Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31(1), 491-543.
Blumenthal, D. M., Resco, V., Morgan, J. A., Williams, D. G., LeCain, D. R., Hardy, E. M., … Bladyka, E. (2013). Invasive forb benefits from water savings by native plants and carbon fertilization under elevated CO2 and warming. New Phytologist, 200(4), 1156-1165.
Burnett, A. C., Davidson, K. J., Serbin, S. P., & Rogers, A. (2019). The “one-point method” for estimating maximum carboxylation capacity of photosynthesis: A cautionary tale. Plant, Cell & Environment, 42(8), 2472-2481.
Centritto, M., Lee, H. S., & Jarvis, P. G. (1999). Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings I. growth, whole-plant water use efficiency and water loss. New Phytologist, 141(1), 129-140.
Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought - from genes to the whole plant. Functional Plant Biology, 30(3), 239-264.
Craine, J. M., Reich, P. B., David Tilman, G., Ellsworth, D., Fargione, J., Knops, J., & Naeem, S. (2003). The role of plant species in biomass production and response to elevated CO2 and N. Ecology Letters, 6(7), 623-625.
Damour, G., Simonneau, T., Cochard, H., & Urban, L. (2010). An overview of models of stomatal conductance at the leaf level. Plant, Cell & Environment, 33(9), 1419-1438.
De Kauwe, M. G., Lin, Y. S., Wright, I. J., Medlyn, B. E., Crous, K. Y., Ellsworth, D. S., … Rogers, A. (2016). A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytologist, 210(3), 1130-1144.
Dikšaitytė, A., Viršilė, A., Žaltauskaitė, J., Januškaitienė, I., & Juozapaitienė, G. (2019). Growth and photosynthetic responses in Brassica napus differ during stress and recovery periods when exposed to combined heat, drought and elevated CO2. Plant Physiology and Biochemistry, 142, 59-72.
Drake, B. G., Gonzàlez-Meler, M. A., & Long, S. P. (1997). More efficient plants: A consequence of rising atmospheric CO2? Annual Review of Plant Biology, 48(1), 609-639.
Flexas, J., Bota, J., Galmes, J., Medrano, H., & Ribas-Carbó, M. (2006). Keeping a positive carbon balance under adverse conditions: Responses of photosynthesis and respiration to water stress. Physiologia Plantarum, 127(3), 343-352.
Ghannoum, O., Caemmerer, S. V., Ziska, L., & Conroy, J. P. (2000). The growth response of C4 plants to rising atmospheric CO2 partial pressure: A reassessment. Plant, Cell & Environment, 23(9), 931-942.
Gunderson, C. A., Sholtis, J., Wullschleger, S. D., Tissue, D. T., Hanson, P. J., & Norby, R. J. (2002). Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant, Cell & Environment, 25(3), 379-393.
Hikosaka, K., Ishikawa, K., Borjigidai, A., Muller, O., & Onoda, Y. (2005). Temperature acclimation of photosynthesis: Mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany, 57(2), 291-302.
Hisano, M., Chen, H. Y., Searle, E. B., & Reich, P. B. (2019). Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century. Ecology Letters, 22(6), 999-1008.
Hovenden, M. J., Leuzinger, S., Newton, P. C., Fletcher, A., Fatichi, S., Lüscher, A., … Blumenthal, D. M. (2019). Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2. Nature Plants, 5(2), 167-173.
Intergovernmental Panel on Climate Change (2013). In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (p. 1535). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
Jackson, R., Sala, O., Field, C., & Mooney, H. (1994). CO2 alters water use, carbon gain, and yield for the dominant species in a natural grassland. Oecologia, 98(3-4), 257-262.
Kattge, J., & Knorr, W. (2007). Temperature acclimation in a biochemical model of photosynthesis: A re-analysis of data from 36 species. Plant, Cell & Environment, 30(9), 1176-1190.
Knapp, A. (1984). Water relations and growth of three grasses during wet and drought years in a tallgrass prairie. Oecologia, 65(1), 35-43.
Kocacinar, F., & Sage, R. (2003). Photosynthetic pathway alters xylem structure and hydraulic function in herbaceous plants. Plant, Cell & Environment, 26(12), 2015-2026.
Leakey, A. D., Ainsworth, E. A., Bernachhi, C. J., Rogers, A., Long, S. P., & Ort, D. R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. Journal of Experimental Botany, 60(10), 2859-2876.
LeCain, D. R., Morgan, J. A., Mosier, A. R., & Nelson, J. A. (2003). Soil and plant water relations determine photosynthetic responses of C3 and C4 grasses in a semi-arid ecosystem under elevated CO2. Annals of Botany, 92(1), 41-52.
Lee, T. D., Barrott, S. H., & Reich, P. B. (2011). Photosynthetic responses of 13 grassland species across 11 years of free-air CO2 enrichment is modest, consistent and independent of N supply. Global Change Biology, 17(9), 2893-2904.
Li, Z., Zhang, Y., Yu, D., Zhang, N., Lin, J., Zhang, J., … Mu, C. (2014). The influence of precipitation regimes and elevated CO2 on photosynthesis and biomass accumulation and partitioning in seedlings of the rhizomatous perennial grass Leymus chinensis. PLoS One, 9(8), e103633.
Long, S. (1991). Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant, Cell & Environment, 14(8), 729-739.
Medlyn, B., Barton, C., Broadmeadow, M., Ceulemans, R., De Angelis, P., Forstreuter, M., … Laitat, E. (2001). Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis. New Phytologist, 149(2), 247-264.
Morgan, J., Hunt, H., Monz, C., & LeCain, D. (1994). Consequences of growth at two carbon dioxide concentrations and two temperatures for leaf gas exchange in Pascopyrum smithii (C3) and Bouteloua gracilis (C4). Plant, Cell & Environment, 17(9), 1023-1033.
Morgan, J., Pataki, D., Körner, C., Clark, H., Grosso, S. D., Grünzweig, J., … Niklaus, P. A. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140(1), 11-25.
Mueller, K. E., Blumenthal, D. M., Pendall, E., Carrillo, Y., Dijkstra, F. A., Williams, D. G., … Morgan, J. A. (2016). Impacts of warming and elevated CO2 on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time. Ecology Letters, 19(8), 956-966.
Mueller, K. E., Hobbie, S. E., Tilman, D., & Reich, P. B. (2013). Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment. Global Change Biology, 19(4), 1249-1261.
Nelson, J. A., Morgan, J. A., LeCain, D. R., Mosier, A. R., Milchunas, D. G., & Parton, B. A. (2004). Elevated CO2 increases soil moisture and enhances plant water relations in a long-term field study in semi-arid shortgrass steppe of Colorado. Plant and Soil, 259(1-2), 169-179.
Niinemets, Ü. (1999). Research review. Components of leaf dry mass per area-thickness and density-alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist, 144(1), 35-47.
Niklaus, P. A., Spinnler, D., & Körner, C. (1998). Soil moisture dynamics of calcareous grassland under elevated CO2. Oecologia, 117(1-2), 201-208.
Nowak, R. S., Ellsworth, D. S., & Smith, S. D. (2004). Functional responses of plants to elevated atmospheric CO2-do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 162(2), 253-280.
Nowak, R. S., Zitzer, S. F., Babcock, D., Smith-Longozo, V., Charlet, T. N., Coleman, J. S., … Smith, S. D. (2004). Elevated atmospheric CO2 does not conserve soil water in the Mojave Desert. Ecology, 85(1), 93-99.
Pastore, M. A., Lee, T. D., Hobbie, S. E., & Reich, P. B. (2019). Strong photosynthetic acclimation and enhanced water-use efficiency in grassland functional groups persist over 21 years of CO2 enrichment, independent of nitrogen supply. Global Change Biology., 25(9), 3031-3044.
Poorter, H. (1993). Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. In J. L. H. Rozema, S. C. Van de Geijn, & M. L. Cambridge (Eds.), CO2 and biosphere. Advances in vegetation science (pp. 77-98). Dordrecht: Springer.
Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189-1202.
Reich, P. B., Buschena, C., Tjoelker, M., Wrage, K., Knops, J., Tilman, D., & Machado, J.-L. (2003). Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: A test of functional group differences. New Phytologist, 157(3), 617-631.
Reich, P. B., & Hobbie, S. E. (2013). Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nature Climate Change, 3(3), 278-282.
Reich, P. B., Hobbie, S. E., Lee, T., Ellsworth, D. S., West, J. B., Tilman, D., … Trost, J. (2006). Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440(7086), 922-925.
Reich, P. B., Hobbie, S. E., & Lee, T. D. (2014). Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nature Geoscience, 7(12), 920-924.
Reich, P. B., Knops, J., Tilman, D., Craine, J., Ellsworth, D., Tjoelker, M., … Bahauddin, D. (2001). Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 410(6830), 809-810.
Reich, P. B., Sendall, K. M., Stefanski, A., Rich, R. L., Hobbie, S. E., & Montgomery, R. A. (2018). Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 562(7726), 263-267.
Reich, P. B., Walters, M. B., & Ellsworth, D. S. (1997). From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences, 94(25), 13730-13734.
Rodgers, V. L., Hoeppner, S. S., Daley, M. J., & Dukes, J. S. (2012). Leaf-level gas exchange and foliar chemistry of common old-field species responding to warming and precipitation treatments. International Journal of Plant Sciences, 173(9), 957-970.
Rogers, A., Ainsworth, E. A., & Leakey, A. D. (2009). Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiology, 151(3), 1009-1016.
Sage, R. F., & Kubien, D. S. (2007). The temperature response of C3 and C4 photosynthesis. Plant, Cell & Environment, 30(9), 1086-1106.
Shaw, M. R., Zavaleta, E. S., Chiariello, N. R., Cleland, E. E., Mooney, H. A., & Field, C. B. (2002). Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298(5600), 1987-1990.
Song, B., Niu, S., & Wan, S. (2016). Precipitation regulates plant gas exchange and its long-term response to climate change in a temperate grassland. Journal of Plant Ecology, 9(5), 531-541.
Song, J., Wan, S., Piao, S., Hui, D., Hovenden, M. J., Ciais, P., … Ru, J. (2019). Elevated CO2 does not stimulate carbon sink in a semi-arid grassland. Ecology Letters, 22(3), 458-468. https://doi.org/10.1111/ele.13202
Song, J., Wan, S., Piao, S., Knapp, A. K., Classen, A. T., Vicca, S., … Beier, C. (2019). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3(9), 1309-1320.
Stewart, J., El Abidine, A. Z., & Bernier, P. (1995). Stomatal and mesophyll limitations of photosynthesis in black spruce seedlings during multiple cycles of drought. Tree Physiology, 15(1), 57-64.
Stitt, M., & Krapp, A. (1999). The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background. Plant, Cell & Environment, 22(6), 583-621.
Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., … Eisenhauer, N. (2019). Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation. Soil Biology and Biochemistry, 135, 184-193.
Urban, O. (2003). Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica, 41(1), 9-20.
Volk, M., Niklaus, P. A., & Körner, C. (2000). Soil moisture effects determine CO2 responses of grassland species. Oecologia, 125(3), 380-388.
Wand, S. J., Midgley, G. F., Jones, M. H., & Curtis, P. S. (1999). Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: A meta-analytic test of current theories and perceptions. Global Change Biology, 5(6), 723-741.
Wang, D., Heckathorn, S. A., Wang, X., & Philpott, S. M. (2012). A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia, 169(1), 1-13.
Way, D. A., & Yamori, W. (2014). Thermal acclimation of photosynthesis: On the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynthesis Research, 119(1-2), 89-100.
Wright, I. J., Reich, P. B., Cornelissen, J. H., Falster, D. S., Groom, P. K., Hikosaka, K., … Oleksyn, J. (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14(5), 411-421.
Wright, I. J., Reich, P. B., & Westoby, M. (2003). Least-cost input mixtures of water and nitrogen for photosynthesis. The American Naturalist, 161(1), 98-111.
Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., & Hungate, B. A. (2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Global Change Biology, 17(2), 927-942.