A ketocarotenoid-based colour polymorphism in the Sira poison frog Ranitomeya sirensis indicates novel gene interactions underlying aposematic signal variation.
Dendrobatidae
carotenoids
colour polymorphism
ketolase
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
07
02
2020
revised:
30
04
2020
accepted:
04
05
2020
pubmed:
14
5
2020
medline:
5
6
2021
entrez:
14
5
2020
Statut:
ppublish
Résumé
The accumulation of red ketocarotenoids is an important component of coloration in many organisms, but the underlying mechanisms are poorly understood. In some organisms, ketocarotenoids are sequestered from the diet and can accumulate when enzymes responsible for carotenoid breakdown are disrupted. In other organisms, ketocarotenoids are formed endogenously from dietary precursors via oxidation reactions carried out by carotenoid ketolase enzymes. Here, we study the genetic basis of carotenoid coloration in an amphibian. We demonstrate that a red/yellow polymorphism in the dendrobatid poison frog Ranitomeya sirensis is due to the presence/absence of ketocarotenoids. Using whole-transcriptome sequencing of skins and livers, we found that a transcript encoding a cytochrome P450 enzyme (CYP3A80) is expressed 3.4-fold higher in livers of red frogs versus yellow. As CYP3A enzymes are known carotenoid ketolases in other organisms, our results point to CYP3A80 as a strong candidate for a carotenoid ketolase in amphibians. Furthermore, in red frogs, the transcript encoding the carotenoid cleavage enzyme BCO2 is expressed at a low level or as a splice variant lacking key catalytic amino acids. This suggests that BCO2 function may be disrupted in red frogs, providing a mechanism whereby the accumulation of ketocarotenoids and their dietary precursors may be enhanced.
Substances chimiques
Carotenoids
36-88-4
Cytochrome P-450 Enzyme System
9035-51-2
Banques de données
Dryad
['10.5061/dryad.wpzgmsbj2']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2004-2015Informations de copyright
© 2020 John Wiley & Sons Ltd.
Références
Aichinger, M. (1991). A new species of poison-dart frog (Anura: Dendrobatidae) from the Serrania de Sira. Peru. Herpetologica, 47(1), 1-5.
Amengual, J., Lobo, G. P., Golczak, M., Li, H. N. M., Klimova, T., Hoppel, C. L., … von Lintig, J. (2011). A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. The FASEB Journal, 25(3), 948-959. https://doi.org/10.1096/fj.10-173906
Andrade, P., Pinho, C., Pérez i de Lanuza, G., Afonso, S., Brejcha, J., Rubin, C.-J., … Carneiro, M. (2019). Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard. Proceedings of the National Academy of Sciences, 116(12), 5633-5642. https://doi.org/10.1073/pnas.1820320116
Andrewes, A. G., Phaff, H. J., & Starr, M. P. (1976). Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochemistry, 15(6), 1003-1007. https://doi.org/10.1016/S0031-9422(00)84390-3
Barton, N. H., & Hewitt, G. (1985). Analysis of hybrid zones. Annual Review of Ecology and Systematics, 16, 113-148. https://doi.org/10.1146/annurev.es.16.110185.000553
Bonansea, M. I., Heit, C., & Vaira, M. (2017). Pigment composition of the bright skin in the poison toad Melanophryniscus rubriventris (Anura: Bufonidae) from Argentina. Salamandra, 53(1), 142-147.
Boussiba, S., & Vonshak, A. (1991). Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant and Cell Physiology, 32(7), 1077-1082. https://doi.org/10.1093/oxfordjournals.pcp.a078171
Britton, G. (1985). General carotenoid methods. In J. H. Law & H. C. Rilling (Eds.), Methods in enzymology (vol. III, pp. 113-149). Cambridge, MA: Academic Press.
Brockmann, H., & Völker, O. (1934). Der gelbe Federfarbstoff des Kanarienvogels [Serinus canaria canaria (L.)] und das Vorkommen von Carotinoiden bei Vögeln. Hoppe-Seyler´s Zeitschrift Für Physiologische Chemie, 224(5-6), 193-215. https://doi.org/10.1515/bchm2.1934.224.5-6.193
Brown, J. L., Twomey, E., Amézquita, A., De souza, M. B., Caldwell, J. P., Lötters, S., … Summers, K. (2011). A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa, 3083, 1-120. https://doi.org/10.11646/zootaxa.3083.1.1
Brush, A. H. (1990). Metabolism of carotenoid pigments in birds. The FASEB Journal, 4(12), 2969-2977. https://doi.org/10.1096/fasebj.4.12.2394316
Cantarero, A., & Alonso-Alvarez, C. (2017). Mitochondria-targeted molecules determine the redness of the zebra finch bill. Biology Letters, 13(10), 20170455. https://doi.org/10.1098/rsbl.2017.0455
Chouteau, M., & Angers, B. (2011). The role of predators in maintaining the geographic organization of aposematic signals. The American Naturalist, 178(6), 810-817. https://doi.org/10.1086/662667
Chouteau, M., & Angers, B. (2012). Wright’s shifting balance theory and the diversification of aposematic signals. PLoS One, 7(3), e34028. https://doi.org/10.1371/journal.pone.0034028
Cooper, J. P., Hwang, K., Singh, H., Wang, D., Reynolds, C. P., Curley Jr, R. W., … Kang, M. H. (2011). Fenretinide metabolism in humans and mice: Utilizing pharmacological modulation of its metabolic pathway to increase systemic exposure. British Journal of Pharmacology, 163(6), 1263-1275. https://doi.org/10.1111/j.1476-5381.2011.01310.x
Crothers, L., Saporito, R. A., Yeager, J., Lynch, K., Friesen, C., Richards-Zawacki, C. L., … Cummings, M. (2016). Warning signal properties covary with toxicity but not testosterone or aggregate carotenoids in a poison frog. Evolutionary Ecology, 30, 601-621. https://doi.org/10.1007/s10682-016-9830-y
Cunningham, F. X., & Gantt, E. (2005). A study in scarlet: Enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis: Adonis β-ring oxygenases. The Plant Journal, 41(3), 478-492. https://doi.org/10.1111/j.1365-313X.2004.02309.x
Cunningham, F. X., & Gantt, E. (2011). Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. The Plant Cell, 23(8), 3055-3069. https://doi.org/10.1105/tpc.111.086827
Czeczuga, B. (1980). Investigations on carotenoids in amphibia-II. Carotenoids occurring in various parts of the body of certain species. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 65(4), 623-630. https://doi.org/10.1016/0305-0491(80)90170-4
Darst, C. R., & Cummings, M. E. (2006). Predator learning favours mimicry of a less-toxic model in poison frogs. Nature, 440(7081), 208-211.
del Val, E., Senar, J. C., Garrido-Fernández, J., Jarén, M., Borràs, A., Cabrera, J., & Negro, J. J. (2009). The liver but not the skin is the site for conversion of a red carotenoid in a passerine bird. Naturwissenschaften, 96(7), 797-801. https://doi.org/10.1007/s00114-009-0534-9
dela Seña, C., Sun, J., Narayanasamy, S., Riedl, K. M., Yuan, Y., Curley, R. W., … Harrison, E. H. (2016). Substrate specificity of purified recombinant chicken β-Carotene 9′,10′-oxygenase (BCO2). Journal of Biological Chemistry, 291(28), 14609-14619. https://doi.org/10.1074/jbc.M116.723684
Dreher, C. E., Rodríguez, A., Cummings, M. E., & Pröhl, H. (2017). Mating status correlates with dorsal brightness in some but not all poison frog populations. Ecology and Evolution, 7(24), 10503-10512. https://doi.org/10.1002/ece3.3531
Eriksson, J., Larson, G., Gunnarsson, U., Bed'hom, B., Tixier-Boichard, M., Strömstedt, L., … Andersson, L. (2008). Identification of the Yellow Skin gene reveals a hybrid origin of the domestic chicken. PLOS Genetics, 4(2), e1000010. https://doi.org/10.1371/journal.pgen.1000010
Friedman, N. R., McGraw, K. J., & Omland, K. E. (2014). Evolution of carotenoid pigmentation in caciques and meadowlarks (Icteridae): Repeated gains of red plumage coloration by carotenoid C4-oxygenation. Evolution, 68(3), 791-801. https://doi.org/10.1111/evo.12304
Frost, S. K. V. (1979). Developmental aspects of pigmentation in the Mexican leaf frog, Pachymedusa dacnicolor. Tucson, AZ:University of Arizona.
Frost, S., & Bagnara, J. T. (1978). Separation of pteridines by thin-layer chromatography on combination plates. Journal of Chromatography A, 153(1), 279-283. https://doi.org/10.1016/S0021-9673(00)89886-6
Frost, S. K., & Robinson, S. J. (1984). Pigment cell differentiation in the fire-bellied toad, Bombina orientalis. I. Structural, chemical, and physical aspects of the adult pigment pattern. Journal of Morphology, 179(3), 229-242.
Gazda, M. A., Toomey, M. B., Araújo, P. M., Lopes, R. J., Afonso, S., Myers, C. A., … Carneiro, M. (2020). Genetic basis of de novo appearance of carotenoid ornamentation in bare parts of canaries. Molecular Biology and Evolution, 37(5), 1317-1328. https://doi.org/10.1093/molbev/msaa006
Ge, Z., Johnson, J. D., Cobine, P. A., McGraw, K. J., Garcia, R., & Hill, G. E. (2015). High concentrations of ketocarotenoids in hepatic mitochondria of Haemorhous mexicanus. Physiological and Biochemical Zoology, 88(4), 444-450. https://doi.org/10.1086/681992
Goodwin, T. W. (1986). Metabolism, nutrition, and function of carotenoids. Annual Review of Nutrition, 6(1), 273-297. https://doi.org/10.1146/annurev.nu.06.070186.001421
Gray, S. M., & McKinnon, J. S. (2007). Linking color polymorphism maintenance and speciation. Trends in Ecology & Evolution, 22(2), 71-79. https://doi.org/10.1016/j.tree.2006.10.005
Grether, G. F., Hudon, J., & Endler, J. A. (2001). Carotenoid scarcity, synthetic pteridine pigments and the evolution of sexual coloration in guppies (Poecilia reticulata). Proceedings of the Royal Society B: Biological Sciences, 268(1473), 1245-1253. https://doi.org/10.1098/rspb.2001.1624
Hee, C. S., Chun, C. U., & Young, C. I. (1975). Studies on the carotenoid pigment in abdominal skin of Bombina orientalis (III). Occurrence of 3-hydroxy-canthaxanthin in the abdominal skin of Bombina orientalis. Journal of the Korean Chemical Society, 19(1), 34-37.
Henke, N. A., Heider, S. A. E., Peters-Wendisch, P., & Wendisch, V. F. (2016). Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Marine Drugs, 14(7), https://doi.org/10.3390/md14070124
Hill, G. E., Hood, W. R., Ge, Z., Grinter, R., Greening, C., Johnson, J. D., … Zhang, Y. (2019). Plumage redness signals mitochondrial function in the house finch. Proceedings of the Royal Society B: Biological Sciences, 286(1911), 20191354. https://doi.org/10.1098/rspb.2019.1354
Hudon, J. (1991). Unusual carotenoid use by the Western Tanager (Piranga ludoviciana) and its evolutionary implications. Canadian Journal of Zoology, 69(9), 2311-2320. https://doi.org/10.1139/z91-325
Johnson, J. D., & Hill, G. E. (2013). Is carotenoid ornamentation linked to the inner mitochondria membrane potential? A hypothesis for the maintenance of signal honesty. Biochimie, 95(2), 436-444. https://doi.org/10.1016/j.biochi.2012.10.021
Juszczyk, W. (1952). The preservation of natural colors in skin preparations of certain Amphibia. Copeia, 1952(1), 33-38. https://doi.org/10.2307/1437621
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010
Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357. https://doi.org/10.1038/nmeth.3317
Kim, Y.-S., Yeom, S.-J., & Oh, D.-K. (2011). Production of β-apo-10′-carotenal from β-carotene by human β-carotene-9′,10′-oxygenase expressed in E. coli. Biotechnology Letters, 33(6), 1195-1200. https://doi.org/10.1007/s10529-011-0556-1
LaFountain, A. M., Kaligotla, S., Cawley, S., Riedl, K. M., Schwartz, S. J., Frank, H. A., & Prum, R. O. (2010). Novel methoxy-carotenoids from the burgundy-colored plumage of the Pompadour Cotinga Xipholena punicea. Archives of Biochemistry and Biophysics, 504(1), 142-153. https://doi.org/10.1016/j.abb.2010.08.006
Lehnert, S. J., Christensen, K. A., Vandersteen, W. E., Sakhrani, D., Pitcher, T. E., Heath, J. W., … Devlin, R. H. (2019). Carotenoid pigmentation in salmon: Variation in expression at BCO2-l locus controls a key fitness trait affecting red coloration. Proceedings of the Royal Society B: Biological Sciences, 286(1913), 20191588. https://doi.org/10.1098/rspb.2019.1588
Li, B., Vachali, P. P., Gorusupudi, A., Shen, Z., Sharifzadeh, H., Besch, B. M., … Bernstein, P. S. (2014). Inactivity of human β, β-carotene-9′,10′-dioxygenase (BCO2) underlies retinal accumulation of the human macular carotenoid pigment. Proceedings of the National Academy of Sciences of the United States of America, 111(28), 10173-10178. https://doi.org/10.1073/pnas.1402526111
Lopes, R. J., Johnson, J. D., Toomey, M. B., Ferreira, M. S., Araujo, P. M., Melo-Ferreira, J., … Carneiro, M. (2016). Genetic basis for red coloration in birds. Current Biology, 26(11), 1427-1434. https://doi.org/10.1016/j.cub.2016.03.076
Love, M., Anders, S., & Huber, W. (2014). Differential analysis of count data-the DESeq2 package. Genome Biology, 15(550), 1-54.
Maan, M. E., & Cummings, M. E. (2008). Female preferences for aposematic signal components in a polymorphic poison frog. Evolution, 62(9), 2334-2345. https://doi.org/10.1111/j.1558-5646.2008.00454.x
Maan, M. E., & Cummings, M. E. (2009). Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog. Proceedings of the National Academy of Sciences, 106(45), 19072-19077. https://doi.org/10.1073/pnas.0903327106
Maan, M. E., & Cummings, M. E. (2012). Poison frog colors are honest signals of toxicity, particularly for bird predators. The American Naturalist, 179(1), E1-E14. https://doi.org/10.1086/663197
Mallet, J., & Barton, N. H. (1989). Strong natural selection in a warning-color hybrid zone. Evolution, 421-431. https://doi.org/10.1111/j.1558-5646.1989.tb04237.x
Mamrot, J., Legaie, R., Ellery, S. J., Wilson, T., Seemann, T., Powell, D. R., … Dickinson, H. (2017). De novo transcriptome assembly for the spiny mouse (Acomys cahirinus). Scientific Reports, 7(1), https://doi.org/10.1038/s41598-017-09334-7
Marill, J., Capron, C. C., Idres, N., & Chabot, G. G. (2002). Human cytochrome P450s involved in the metabolism of 9-cis- and 13-cis-retinoic acids. Biochemical Pharmacology, 63(5), 933-943. https://doi.org/10.1016/S0006-2952(01)00925-X
Marill, J., Cresteil, T., Lanotte, M., & Chabot, G. G. (2000). Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Molecular Pharmacology, 58(6), 1341-1348. https://doi.org/10.1124/mol.58.6.1341
Martini, R., & Murray, M. (1993). Participation of P450 3A enzymes in rat hepatic microsomal retinoic acid 4-hydroxylation. Archives of Biochemistry and Biophysics, 303(1), 57-66. https://doi.org/10.1006/abbi.1993.1255
Mast, N., White, M. A., Bjorkhem, I., Johnson, E. F., Stout, C. D., & Pikuleva, I. A. (2008). Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain. Proceedings of the National Academy of Sciences, 105(28), 9546-9551. https://doi.org/10.1073/pnas.0803717105
Matsui, K., Marunouchi, J., & Nakamura, M. (2002). An ultrastructural and carotenoid analysis of the red ventrum of the Japanese newt, Cynops pyrrhogaster. Pigment Cell Research, 15(4), 265-272. https://doi.org/10.1034/j.1600-0749.2002.01085.x
McGraw, K. J. (2006). Mechanics of carotenoid-based coloration. In G. E. Hill & K. J. McGraw (Eds.), Bird Coloration: Mechanisms and measurements (pp. 177-242). Cambridge, MA: Harvard University Press.
McKinnon, J. S., & Pierotti, M. E. R. (2010). Colour polymorphism and correlated characters: Genetic mechanisms and evolution. Molecular Ecology, 19(23), 5101-5125. https://doi.org/10.1111/j.1365-294X.2010.04846.x
McLean, C. A., Lutz, A., Rankin, K. J., Stuart-Fox, D., & Moussalli, A. (2017). Revealing the biochemical and genetic basis of color variation in a polymorphic lizard. Molecular Biology and Evolution, 34(8), 1924-1935. https://doi.org/10.1093/molbev/msx136
McLean, C. A., & Stuart-Fox, D. (2014). Geographic variation in animal colour polymorphisms and its role in speciation. Biological Reviews, 89(4), 860-873. https://doi.org/10.1111/brv.12083
Mundy, N. I., Stapley, J., Bennison, C., Tucker, R., Twyman, H., Kim, K.-W., … Slate, J. (2016). Red carotenoid coloration in the Zebra Finch is controlled by a cytochrome P450 gene cluster. Current Biology, 26(11), 1435-1440. https://doi.org/10.1016/j.cub.2016.04.047
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268-274. https://doi.org/10.1093/molbev/msu300
Obika, M., & Bagnara, J. T. (1964). Pteridines as pigments in amphibians. Science, 143(3605), 485-487. https://doi.org/10.1126/science.143.3605.485
Ojima, K., Breitenbach, J., Visser, H., Setoguchi, Y., Tabata, K., Hoshino, T., … Sandmann, G. (2006). Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a β-carotene 3-hydroxylase/4-ketolase. Molecular Genetics and Genomics, 275(2), 148-158. https://doi.org/10.1007/s00438-005-0072-x
Palczewski, G., Amengual, J., Hoppel, C. L., & von Lintig, J. (2014). Evidence for compartmentalization of mammalian carotenoid metabolism. The FASEB Journal, 28(10), 4457-4469. https://doi.org/10.1096/fj.14-252411
Rambaut, A. (2014). FigTree 1.4. 2 software. Edinburgh: Institute of Evolutionary Biology, Univ.
Rendic, S., & Guengerich, F. P. (2015). Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chemical Research in Toxicology, 28(1), 38-42. https://doi.org/10.1021/tx500444e
Richards-Zawacki, C. L., Wang, I. J., & Summers, K. (2012). Mate choice and the genetic basis for colour variation in a polymorphic dart frog: Inferences from a wild pedigree. Molecular Ecology, 21(15), 3879-3892. https://doi.org/10.1111/j.1365-294X.2012.05644.x
Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis in foods. Washington, DC: ILSI Press.
Santos, J. C., Coloma, L. A., & Cannatella, D. C. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings of the National Academy of Sciences, 100(22), 12792-12797. https://doi.org/10.1073/pnas.2133521100
Saporito, R. A., Donnelly, M. A., Spande, T. F., & Garraffo, H. M. (2012). A review of chemical ecology in poison frogs. Chemoecology, 22(3), 159-168. https://doi.org/10.1007/s00049-011-0088-0
Stuckert, A. M. M., Moore, E., Coyle, K. P., Davison, I., MacManes, M. D., Roberts, R., & Summers, K. (2019). Variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus. BMC Evolutionary Biology, 19(1), 85. https://doi.org/10.1186/s12862-019-1410-7
Summers, K., & Clough, M. E. (2001). The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proceedings of the National Academy of Sciences, 98(11), 6227-6232. https://doi.org/10.1073/pnas.101134898
Summers, K., Symula, R., Clough, M., & Cronin, T. (1999). Visual mate choice in poison frogs. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1434), 2141-2145. https://doi.org/10.1098/rspb.1999.0900
Symula, R., Schulte, R., & Summers, K. (2001). Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1484), 2415-2421.
Toews, D. P. L., Hofmeister, N. R., & Taylor, S. A. (2017). The evolution and genetics of carotenoid processing in animals. Trends in Genetics, 33(3), 171-182. https://doi.org/10.1016/j.tig.2017.01.002
Twomey, E., Johnson, J. D., Castroviejo-Fisher, S., & Van Bocxlaer, I. (2020). Data from: A ketocarotenoid-based color polymorphism in the Sira poison frog Ranitomeya sirensis indicates novel gene interactions underlying aposematic signal variation. Molecular Ecology, Dryad Digital Repository. https://doi.org/10.5061/dryad.wpzgmsbj2
Twomey, E., Kain, M., Claeys, M., Summers, K., Castroviejo-Fisher, S., & Van Bocxlaer, I. (2020). Mechanisms for color convergence in a mimetic radiation of poison frogs. The American Naturalist, 195(5), E132-E149. https://doi.org/10.1086/708157
Twomey, E., Vestergaard, J. S., & Summers, K. (2014). Reproductive isolation related to mimetic divergence in the poison frog Ranitomeya imitator. Nature Communications, 5(4749), 1-8.
Twomey, E., Vestergaard, J. S., Venegas, P. J., & Summers, K. (2015). Mimetic divergence and the speciation continuum in the mimic poison frog Ranitomeya imitator. The American Naturalist, 187(2), 205-224. https://doi.org/10.1086/684439
Twyman, H., Prager, M., Mundy, N. I., & Andersson, S. (2018). Expression of a carotenoid-modifying gene and evolution of red coloration in weaverbirds (Ploceidae). Molecular Ecology, 27(2), 449-458. https://doi.org/10.1111/mec.14451
Twyman, H., Valenzuela, N., Literman, R., Andersson, S., & Mundy, N. I. (2016). Seeing red to being red: Conserved genetic mechanism for red cone oil droplets and co-option for red coloration in birds and turtles. Proceedings of the Royal Society B: Biological Sciences, 283(1836), 20161208. https://doi.org/10.1098/rspb.2016.1208
Veerman, A. (1970). The pigments of Tetranychus cinnabarinus boisd. (Acari: Tetranychidae). Comparative Biochemistry and Physiology, 36(4), 749-763. https://doi.org/10.1016/0010-406X(70)90530-X
Verleun, T. (2018). Ranitomeya perikelen. Dendrobatidae Nederland Magazine, 3, 26-30.
von Lintig, J. (2010). Colors with functions: Elucidating the biochemical and molecular basis of carotenoid metabolism. Annual Review of Nutrition, 30(1), 35-56. https://doi.org/10.1146/annurev-nutr-080508-141027
Wang, I. J., & Summers, K. (2010). Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Molecular Ecology, 19(3), 447-458. https://doi.org/10.1111/j.1365-294X.2009.04465.x
Weaver, R. J., Cobine, P. A., & Hill, G. E. (2018). On the bioconversion of dietary carotenoids to astaxanthin in the marine copepod, Tigriopus californicus. Journal of Plankton Research, 40(2), 142-150. https://doi.org/10.1093/plankt/fbx072
Weaver, R. J., Santos, E. S. A., Tucker, A. M., Wilson, A. E., & Hill, G. E. (2018). Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nature Communications, 9(1), 1-9. https://doi.org/10.1038/s41467-017-02649-z
Wybouw, N., Kurlovs, A. H., Greenhalgh, R., Bryon, A., Kosterlitz, O., Manabe, Y., … Van Leeuwen, T. (2019). Convergent evolution of cytochrome P450s underlies independent origins of keto-carotenoid pigmentation in animals. Proceedings of the Royal Society B: Biological Sciences, 286(1907), 20191039. https://doi.org/10.1098/rspb.2019.1039
Yang, Y., Blomenkamp, S., Dugas, M. B., Richards-Zawacki, C. L., & Pröhl, H. (2019). Mate choice versus mate preference: Inferences about color-assortative mating differ between field and lab assays of poison frog behavior. The American Naturalist, 193(4), 598-607. https://doi.org/10.1086/702249