A single mutation increases heavy-chain heterodimer assembly of bispecific antibodies by inducing structural disorder in one homodimer species.
CH3
antibody
bispecific engagement by antibodies based on the T-cell receptor (BEAT)
heterodimer
knobs-into-holes (KiH)
protein engineering
protein folding
protein stability
protein structure
structural disorder
Journal
The Journal of biological chemistry
ISSN: 1083-351X
Titre abrégé: J Biol Chem
Pays: United States
ID NLM: 2985121R
Informations de publication
Date de publication:
10 07 2020
10 07 2020
Historique:
received:
16
12
2019
revised:
08
05
2020
pubmed:
15
5
2020
medline:
14
1
2021
entrez:
15
5
2020
Statut:
ppublish
Résumé
We previously reported efficient heavy-chain assembly of heterodimeric bispecific antibodies by exchanging the interdomain protein interface of the human IgG1 CH3 dimer with the protein interface of the constant α and β domains of the human T-cell receptor, a technology known as bispecific engagement by antibodies based on the T-cell receptor (BEAT). Efficient heterodimerization in mammalian cell transient transfections was observed, but levels were influenced by the nature of the binding arms, particularly in the Fab-scFv-Fc format. In this study, we report a single amino acid change that significantly and consistently improved the heterodimerization rate of this format (≥95%) by inducing partial disorder in one homodimer species without affecting the heterodimer. Correct folding and assembly of the heterodimer were confirmed by the high-resolution (1.88-1.98 Å) crystal structure presented here. Thermal stability and 1-anilinonaphthalene-8-sulfonic acid-binding experiments, comparing original BEAT, mutated BEAT, and "knobs-into-holes" interfaces, suggested a cooperative assembly process of heavy chains in heterodimers. The observed gain in stability of the interfaces could be classified in the following rank order: mutated BEAT > original BEAT > knobs-into-holes. We therefore propose that the superior cooperativity found in BEAT interfaces is the key driver of their greater performance. Furthermore, we show how the mutated BEAT interface can be exploited for the routine preparation of drug candidates, with minimal risk of homodimer contamination using a single Protein A chromatography step.
Identifiants
pubmed: 32404368
pii: S0021-9258(17)48961-7
doi: 10.1074/jbc.RA119.012335
pmc: PMC7363136
doi:
Substances chimiques
Antibodies, Bispecific
0
Immunoglobulin Heavy Chains
0
Single-Chain Antibodies
0
Banques de données
PDB
['5M3V', '1KGC', '6G1E', '2WAH', '1FC2']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9392-9408Informations de copyright
© 2020 Stutz and Blein.
Déclaration de conflit d'intérêts
Conflict of interest—The authors declare that they were all employees of Ichnos Sciences S.A. at the time the work presented here was conducted.
Références
Nucleic Acids Res. 2015 Jan;43(Database issue):D413-22
pubmed: 25378316
Mol Cell. 2001 Apr;7(4):867-77
pubmed: 11336709
J Mol Biol. 1997 Jul 4;270(1):26-35
pubmed: 9231898
Structure. 2002 Nov;10(11):1521-32
pubmed: 12429093
Immunol Today. 1995 Feb;16(2):85-90
pubmed: 7888072
Acta Crystallogr D Biol Crystallogr. 2004 Mar;60(Pt 3):432-8
pubmed: 14993666
Protein Cell. 2018 Jan;9(1):86-120
pubmed: 28822103
MAbs. 2015;7(2):331-43
pubmed: 25658443
Nature. 1992 Oct 22;359(6397):752-4
pubmed: 1436040
Proteins. 2009;77 Suppl 9:114-22
pubmed: 19768677
J Mol Biol. 2014 May 1;426(9):1947-57
pubmed: 24576605
J Biol Chem. 2010 Jun 18;285(25):19637-46
pubmed: 20400508
Anal Chem. 2015 Oct 20;87(20):10475-82
pubmed: 26376221
J Biol Chem. 2010 Jul 2;285(27):20850-9
pubmed: 20444694
MAbs. 2019 Nov-Dec;11(8):1464-1478
pubmed: 31462177
Anal Chem. 2017 Dec 19;89(24):13494-13501
pubmed: 29129068
Structure. 1995 Mar 15;3(3):265-78
pubmed: 7788293
Front Immunol. 2014 Feb 05;5:22
pubmed: 24600447
J Immunol. 1991 Sep 15;147(6):1877-83
pubmed: 1909733
Nat Biotechnol. 2013 Aug;31(8):753-8
pubmed: 23831709
J Cell Biol. 1987 Mar;104(3):761-7
pubmed: 3102505
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2196-201
pubmed: 15572772
Scand J Immunol. 1982 Mar;15(3):275-8
pubmed: 7089488
J Virol. 1998 Dec;72(12):10066-72
pubmed: 9811746
Protein Eng. 1996 Jul;9(7):617-21
pubmed: 8844834
Biochemistry. 1981 Apr 28;20(9):2361-70
pubmed: 7236608
Nat Commun. 2015 Apr 30;6:6866
pubmed: 25925696
Mol Cell. 2009 Jun 12;34(5):569-79
pubmed: 19524537
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W473-6
pubmed: 17584791
J Biol Chem. 2017 Jun 9;292(23):9745-9759
pubmed: 28450393
J Cell Biol. 1986 May;102(5):1558-66
pubmed: 3084497
MAbs. 2017 Feb/Mar;9(2):182-212
pubmed: 28071970