ACTRIIA-Fc rebalances activin/GDF versus BMP signaling in pulmonary hypertension.
Journal
Science translational medicine
ISSN: 1946-6242
Titre abrégé: Sci Transl Med
Pays: United States
ID NLM: 101505086
Informations de publication
Date de publication:
13 05 2020
13 05 2020
Historique:
received:
19
09
2019
revised:
22
01
2020
accepted:
17
04
2020
entrez:
15
5
2020
pubmed:
15
5
2020
medline:
24
6
2021
Statut:
ppublish
Résumé
Human genetics, biomarker, and animal studies implicate loss of function in bone morphogenetic protein (BMP) signaling and maladaptive transforming growth factor-β (TGFβ) signaling as drivers of pulmonary arterial hypertension (PAH). Although sharing common receptors and effectors with BMP/TGFβ, the function of activin and growth and differentiation factor (GDF) ligands in PAH are less well defined. Increased expression of GDF8, GDF11, and activin A was detected in lung lesions from humans with PAH and experimental rodent models of pulmonary hypertension (PH). ACTRIIA-Fc, a potent GDF8/11 and activin ligand trap, was used to test the roles of these ligands in animal and cellular models of PH. By blocking GDF8/11- and activin-mediated SMAD2/3 activation in vascular cells, ACTRIIA-Fc attenuated proliferation of pulmonary arterial smooth muscle cells and pulmonary microvascular endothelial cells. In several experimental models of PH, prophylactic administration of ACTRIIA-Fc markedly improved hemodynamics, right ventricular (RV) hypertrophy, RV function, and arteriolar remodeling. When administered after the establishment of hemodynamically severe PH in a vasculoproliferative model, ACTRIIA-Fc was more effective than vasodilator in attenuating PH and arteriolar remodeling. Potent antiremodeling effects of ACTRIIA-Fc were associated with inhibition of SMAD2/3 activation and downstream transcriptional activity, inhibition of proliferation, and enhancement of apoptosis in the vascular wall. ACTRIIA-Fc reveals an unexpectedly prominent role of GDF8, GDF11, and activin as drivers of pulmonary vascular disease and represents a therapeutic strategy for restoring the balance between SMAD1/5/9 and SMAD2/3 signaling in PAH.
Identifiants
pubmed: 32404506
pii: 12/543/eaaz5660
doi: 10.1126/scitranslmed.aaz5660
pmc: PMC8259900
mid: NIHMS1709249
pii:
doi:
Substances chimiques
Activins
104625-48-1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIAMS NIH HHS
ID : R01 AR057374
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL131910
Pays : United States
Organisme : NHLBI NIH HHS
ID : R42 HL132742
Pays : United States
Informations de copyright
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Références
Circulation. 2009 Feb 3;119(4):566-76
pubmed: 19153267
J Biol Chem. 2008 Feb 15;283(7):3877-88
pubmed: 18042551
Am J Respir Crit Care Med. 2008 Apr 15;177(8):896-905
pubmed: 18202349
Am J Respir Crit Care Med. 2019 Apr 1;199(7):891-902
pubmed: 30312106
Curr Gene Ther. 2012 Jun;12(3):245-59
pubmed: 22554312
Int J Mol Sci. 2018 Sep 28;19(10):
pubmed: 30274147
Eur Respir J. 2011 Dec;38(6):1453-60
pubmed: 21478213
Circulation. 2013 Mar 12;127(10):1128-38
pubmed: 23403476
J Appl Physiol (1985). 2006 Feb;100(2):564-71
pubmed: 16223981
J Nutr Sci Vitaminol (Tokyo). 2017;63(4):244-248
pubmed: 28978871
Circulation. 2010 Jun 29;121(25):2747-54
pubmed: 20547927
Br J Haematol. 2014 Jun;165(6):814-23
pubmed: 24650009
Chest. 2012 Aug;142(2):448-456
pubmed: 22281797
Am J Respir Crit Care Med. 2016 Jun 15;193(12):1410-20
pubmed: 26760925
Int J Cardiol. 2016 Nov 1;222:368-374
pubmed: 27500766
Proc Natl Acad Sci U S A. 2008 May 13;105(19):7082-7
pubmed: 18460605
Nat Med. 2015 Jul;21(7):777-85
pubmed: 26076038
Am J Physiol Lung Cell Mol Physiol. 2004 Nov;287(5):L919-27
pubmed: 15220111
Eur Respir J. 2019 Jan 24;53(1):
pubmed: 30545968
J Biol Chem. 2009 Jun 5;284(23):15794-804
pubmed: 19366699
BMC Biol. 2017 Mar 3;15(1):19
pubmed: 28257634
Hypertension. 2018 Apr;71(4):729-741
pubmed: 29463625
J Biol Chem. 2012 Aug 10;287(33):27313-25
pubmed: 22718755
Methods Mol Biol. 2019;1891:221-233
pubmed: 30414136
Am J Respir Cell Mol Biol. 2012 Jun;46(6):723-30
pubmed: 22427538
BMC Pulm Med. 2016 Jan 22;16:17
pubmed: 26801773
J Appl Physiol (1985). 2009 Apr;106(4):1356-64
pubmed: 19196915
Circulation. 2013 Sep 17;128(12):1354-64
pubmed: 23958565
Blood. 2007 Mar 1;109(5):1953-61
pubmed: 17068149
N Engl J Med. 2005 Sep 29;353(13):1412-3
pubmed: 16192491
J Clin Invest. 2005 Oct;115(10):2811-21
pubmed: 16200212
Am J Respir Crit Care Med. 2016 Nov 1;194(9):1140-1151
pubmed: 27115515
BMC Dev Biol. 2009 Mar 19;9:24
pubmed: 19298661
Am J Pathol. 2009 Feb;174(2):380-9
pubmed: 19116361
Nat Med. 2014 Apr;20(4):398-407
pubmed: 24658077
J Clin Pharmacol. 2013 Nov;53(11):1121-30
pubmed: 23939631
Curr Opin Mol Ther. 2010 Oct;12(5):586-97
pubmed: 20886391
Lancet Haematol. 2018 Feb;5(2):e63-e72
pubmed: 29331635
J Biol Chem. 2005 Jul 1;280(26):24443-50
pubmed: 15883158
Nat Commun. 2018 Apr 12;9(1):1416
pubmed: 29650961
Eur J Pharmacol. 2019 Nov 15;863:172679
pubmed: 31542483
Am J Pathol. 1994 Feb;144(2):286-95
pubmed: 8311113
Eur Respir J. 2020 Feb 12;55(2):
pubmed: 31744833
J Am Coll Cardiol. 2013 Dec 24;62(25 Suppl):D13-21
pubmed: 24355637
Muscle Nerve. 2011 May;43(5):694-9
pubmed: 21462203
Nat Commun. 2017 Apr 28;8:15153
pubmed: 28452368
Cell Commun Signal. 2015 Jun 06;13:27
pubmed: 26047946