Transcriptomes shed light on transgenerational and developmental effects of ocean warming on embryos of the sea urchin Strongylocentrotus intermedius.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 05 2020
Historique:
received: 01 08 2019
accepted: 21 04 2020
entrez: 15 5 2020
pubmed: 15 5 2020
medline: 15 12 2020
Statut: epublish

Résumé

Ocean warming increasingly endangers the fitness of marine invertebrates. Transgenerational effects (TE) potentially mitigate the impacts of environmental stress on the embryos of marine invertebrates. The molecular mechanisms, however, remain largely unknown. Using high-throughput RNA sequencing technology, we investigated the gene expression patterns of embryos (the gastrula stage) of the sea urchin Strongylocentrotus intermedius at different developmental temperatures, whose parents were exposed to long-term (15 months) elevated temperature (A) or not (B). The temperatures at which adults were held for ~4 weeks prior to the start of the experiment (21 °C for A and 18 °C for B) were also used for the development of offspring (high: 21 °C and ambient (laboratory): 18 °C) resulting in four experimental groups (HA and HB at 21 °C, and LA and LB at 18 °C). The embryos were sampled ~24 h after fertilization. All samples were in the gastrula stage. Twelve mRNA libraries (groups HA, HB, LA, LB, 3 replicates for each group) were established for the following sequencing. Embryos whose parents were exposed to elevated temperatures or not showed 1891 significantly different DEGs (differentially expressed genes) at the ambient developmental temperature (LB vs LA, LB as control) and 2203 significantly different DEGs at the high developmental temperature (HB vs HA, HB as control), respectively. This result indicates complex molecular mechanisms of transgenerational effects of ocean warming, in which a large number of genes are involved. With the TE, we found 904 shared DEGs in both LB vs LA (LB as control) and HB vs HA (HB as control) changed in the same direction of expression (i.e., up- or down-regulated), indicating that parental exposed temperatures affect the expression of these genes in the same manner regardless of the development temperature. With developmental exposure, we found 198 shared DEGs in both HB vs LB (HB as control) and HA vs LA (HA as control) changed in the same direction of expression. Of the 198 DEGs, more genes were up-regulated at high developmental temperature. Interestingly, embryos whose parents were exposed to high temperature showed fewer differently expressed DEGs between high and low developmental temperatures than the individuals whose parents were exposed to ambient temperature. The results indicate that gene expressions are probably depressed by the transgenerational effect of ocean warming. The roles of hsp70 and hnf6 in thermal acclimation are highlighted for future studies. The present study provides new insights into the molecular mechanisms of the transgenerational and developmental effects of ocean warming on the embryos of sea urchins.

Identifiants

pubmed: 32404890
doi: 10.1038/s41598-020-64872-x
pii: 10.1038/s41598-020-64872-x
pmc: PMC7221070
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7931

Références

Stocker, T. F. et al. Climate change 2013: The physical science basis. (Cambridge University Press Cambridge, 2013).
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
doi: 10.1038/s41586-019-1132-4
Richardson, A. J. & Schoeman, D. S. Sea animals are more vulnerable to warming than are land ones. Nature 569, 50–51 (2019).
doi: 10.1038/d41586-019-01193-8
Pecorino, D., Lamare, M. D., Barker, M. F. & Byrne, M. How does embryonic and larval thermal tolerance contribute to the distribution of the sea urchin Centrostephanus rodgersii (Diadematidae) in New Zealand? J. Exp. Mar. Biol. Ecol. 445, 120–128 (2013).
doi: 10.1016/j.jembe.2013.04.013
Shama, L. N. S. et al. Transgenerational effects persist down the maternal line in marine sticklebacks: gene expression matches physiology in a warming ocean. Evol. Appl. 9, 1096–1111 (2016).
doi: 10.1111/eva.12370
Liu, W., Huang, X., Lin, J. & He, M. Seawater acidification and elevated temperature affect gene expression patterns of the pearl oyster Pinctada fucata. PLoS One 7, e33679 (2012).
doi: 10.1371/journal.pone.0033679
Ross, P. M., Parker, L. & Byrne, M. Transgenerational responses of molluscs and echinoderms to changing ocean conditions. ICES J. Mar. Sci. J. Cons. 73, 537–549 (2016).
doi: 10.1093/icesjms/fsv254
Salinas, S. & Munch, S. B. Thermal legacies: transgenerational effects of temperature on growth in a vertebrate: thermal transgenerational plasticity. Ecol. Lett. 15, 159–163 (2012).
doi: 10.1111/j.1461-0248.2011.01721.x
Chirgwin, E., Marshall, D. J., Sgrò, C. M. & Monro, K. How does parental environment influence the potential for adaptation to global change? Proc. R. Soc. B Biol. Sci. 285, 20181374 (2018).
doi: 10.1098/rspb.2018.1374
Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180174 (2019).
doi: 10.1098/rstb.2018.0174
Byrne, M., Selvakumaraswamy, P., Ho, M. A., Woolsey, E. & Nguyen, H. D. Sea urchin development in a global change hotspot, potential for southerly migration of thermotolerant propagules. Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 712–719 (2011).
doi: 10.1016/j.dsr2.2010.06.010
Wong, J. M., Johnson, K. M., Kelly, M. W. & Hofmann, G. E. Transcriptomics reveal transgenerational effects in purple sea urchin embryos: adult acclimation to upwelling conditions alters the response of their progeny to differential p CO
doi: 10.1111/mec.14503
Veilleux, H. D. et al. Molecular processes of transgenerational acclimation to a warming ocean. Nat. Clim. Change 5, 1074–1078 (2015).
doi: 10.1038/nclimate2724
Rahman, S., Tsuchiya, M. & Uehara, T. Effects of temperature on hatching rate, embryonic development and early larval survival of the edible sea urchin, Tripneustes gratilla. Biologia (Bratisl.) 64, 768–775 (2009).
doi: 10.2478/s11756-009-0135-2
Zhao, C. et al. Transgenerational effects of ocean warming on the sea urchin Strongylocentrotus intermedius. Ecotoxicol. Environ. Saf. 151, 212–219 (2018).
doi: 10.1016/j.ecoenv.2018.01.014
Otim, O., Amore, G., Minokawa, T., McClay, D. R. & Davidson, E. H. SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis. Dev. Biol. 273, 226–243 (2004).
doi: 10.1016/j.ydbio.2004.05.033
Bonaventura, R., Poma, V., Russo, R., Zito, F. & Matranga, V. Effects of UV-B radiation on development and hsp70 expression in sea urchin cleavage embryos. Mar. Biol. 149, 79–86 (2006).
doi: 10.1007/s00227-005-0213-0
Suckling, C. C. et al. Adult acclimation to combined temperature and pH stressors significantly enhances reproductive outcomes compared to short-term exposures. J. Anim. Ecol. 84, 773–784 (2015).
doi: 10.1111/1365-2656.12316
Runcie, D. E. et al. Genetics of gene expression responses to temperature stress in a sea urchin gene network: temperature stress in a gene network. Mol. Ecol 21, 4547–4562 (2012).
doi: 10.1111/j.1365-294X.2012.05717.x
Clark, M. S. et al. Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris. Sci. Rep. 9, 952 (2019).
doi: 10.1038/s41598-018-37255-6
Franks, R. R., Hough-Evans, B. R., Britten, R. J. & Davidson, E. H. Direct introduction of cloned DNA into the sea urchin zygote nucleus, and fate of injected. DNA. Dev. Camb. Engl. 102, 287–299 (1988).
Stumpp, M. et al. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc. Natl. Acad. Sci. U. S. A. 109, 18192–18197 (2012).
doi: 10.1073/pnas.1209174109
Burke, R. D., Moller, D. J., Krupke, O. A. & Taylor, V. J. Sea urchin neural development and the metazoan paradigm of neurogenesis: Embryonic Neurogenesis. genesis 52, 208–221 (2014).
doi: 10.1002/dvg.22750
Byrne, M. et al. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proc. R. Soc. B Biol. Sci. 276, 1883–1888 (2009).
doi: 10.1098/rspb.2008.1935
Dinsmore, J. H. & Sloboda, R. D. Calcium and calmodulin-dependent phosphorylation of a 62 kd protein induces microtubule depolymerization in sea urchin mitotic apparatuses. Cell 53, 769–780 (1988).
doi: 10.1016/0092-8674(88)90094-3
Cox, R. L., Mariano, T., Heck, D. E., Laskin, J. D. & Stegeman, J. J. Nitric oxide synthase sequences in the marine fish Stenotomus chrysops and the sea urchin Arbacia punctulata, and phylogenetic analysis of nitric oxide synthase calmodulin-binding domains. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 130, 479–491 (2001).
doi: 10.1016/S1096-4959(01)00446-8
Farach-Carson, M. C. A calcium-binding, asparagine-linked oligosaccharide is involved in skeleton formation in the sea urchin embryo. J. Cell Biol. 109, 1289–1299 (1989).
doi: 10.1083/jcb.109.3.1289
Haley, S. A. & Wessel, G. M. The cortical granule serine protease CGSP1 of the sea urchin, Strongylocentrotus purpuratus, is autocatalytic and contains a low-density lipoprotein receptor-like Domain. Dev. Biol. 211, 1–10 (1999).
doi: 10.1006/dbio.1999.9299
Strader, M. E., Wong, J. M., Kozal, L. C., Leach, T. S. & Hofmann, G. E. Parental environments alter DNA methylation in offspring of the purple sea urchin, Strongylocentrotus purpuratus. J. Exp. Mar. Biol. Ecol. 517, 54–64 (2019).
doi: 10.1016/j.jembe.2019.03.002
Tavaria, M., Gabriele, T., Kola, I. & Anderson, R. L. A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones 1, 23–28 (1996).
doi: 10.1379/1466-1268(1996)001<0023:AHSGTT>2.3.CO;2
Morano, K. A. New tricks for an old dog: the evolving world of Hsp70. Ann. N. Y. Acad. Sci. 1113, 1–14 (2007).
doi: 10.1196/annals.1391.018
Sconzo, G. et al. Activation by Heat Shock of hsp70 Gene Transcription in Sea Urchin Embryos. Biochem. Biophys. Res. Commun. 217, 1032–1038 (1995).
doi: 10.1006/bbrc.1995.2873
Zhang, L. et al. Effects of long-term elevated temperature on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. PeerJ 5, e3122 (2017).
doi: 10.7717/peerj.3122
Agatsuma, Y. Strongylocentrotus intermedius. in Sea Urchins: Biology and Ecology (ed. John Miller Lawrence) vol. 38 437–447 (Elsevier, 2013).
Wang, Z. & Chang, Y. Studies on hatching of Japanese sea urchin Strongylocentrotus intermedius. J. Fish. Sci. China 4, 60–67 (1997).
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
doi: 10.1038/nbt.1883
Pertea, G. et al. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19, 651–652 (2003).
doi: 10.1093/bioinformatics/btg034
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
doi: 10.1093/bioinformatics/btv351
Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36, 3420–3435 (2008).
doi: 10.1093/nar/gkn176
Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–484 (2008).
doi: 10.1093/nar/gkm882
Anders, S. & Huber, W. Differential expression of RNA-Seq data at the gene level – the DESeq package (2012).

Auteurs

Dongtao Shi (D)

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.

Chong Zhao (C)

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China. chongzhao@dlou.edu.cn.

Yang Chen (Y)

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.

Jingyun Ding (J)

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.

Lisheng Zhang (L)

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.

Yaqing Chang (Y)

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China. changlab@hotmail.com.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH