Precise test of quantum electrodynamics and determination of fundamental constants with HD
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
18
11
2018
accepted:
12
02
2020
entrez:
15
5
2020
pubmed:
15
5
2020
medline:
15
5
2020
Statut:
ppublish
Résumé
Bound three-body quantum systems are important for fundamental physics
Identifiants
pubmed: 32405005
doi: 10.1038/s41586-020-2261-5
pii: 10.1038/s41586-020-2261-5
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
152-158Subventions
Organisme : European Research Council
Pays : International
Références
Karshenboim, S. G. (ed.) Precision Physics of Simple Atoms and Molecules (Springer-Verlag, 2008).
Pachucki, K., Patkóš, V. & Yerokhin, V. A. Testing fundamental interactions on the helium atom. Phys. Rev. A 95, 062510 (2017).
Leach, C. A. & Moss, R. E. Spectroscopy and quantum mechanics of the hydrogen molecular cation: a test of molecular quantum mechanics. Annu. Rev. Phys. Chem. 46, 55–82 (1995).
pubmed: 24328942
Roth, B. et al. in Precision Physics of Simple Atoms and Molecules (ed. Karshenboim, S. G.) 205–232 (Springer-Verlag, 2008).
Wing, W. H., Ruff, G. A., Lamb, W. E. & Spezeski, J. J. Observation of the infrared spectrum of the hydrogen molecular ion HD
Arcuni, P. W., Fu, Z. W. & Lundeen, S. R. Energy difference between the (ν = 0, R = 1) and the (ν = 0, R = 3) states of [Formula: see text], measured with interseries microwave spectroscopy of H
pubmed: 9904007
Carrington, A., McNab, I. R., Montgomerie-Leach, C. A. & Kennedy, R. A. Vibration-rotation spectroscopy of the HD
Fu, Z. W., Hessels, E. A. & Lundeen, S. R. Determination of the hyperfine structure of [Formula: see text] (ν = 0, R = 1) by microwave spectroscopy of high-L, n = 27 Rydberg states of H
pubmed: 9908882
Critchley, A. D. J., Hughes, A. N. & McNab, I. R. Direct measurement of a pure rotation transition in [Formula: see text]. Phys. Rev. Lett. 86, 1725–1728 (2001).
pubmed: 11290233
Osterwalder, A., Wüest, A., Merkt, F. & Jungen, C. High-resolution millimeter wave spectroscopy and multichannel quantum defect theory of the hyperfine structure in high Rydberg states of molecular hydrogen [Formula: see text]. J. Chem. Phys. 121, 11810–11838 (2004).
pubmed: 15634145
Koelemeij, J. C. J., Roth, B., Wicht, A., Ernsting, I. & Schiller, S. Vibrational spectroscopy of HD
Bressel, U. et al. Manipulation of individual hyperfine states in cold trapped molecular ions and application to HD
pubmed: 22681070
Haase, C., Beyer, M., Jungen, C. & Merkt, F. The fundamental rotational interval of para-[Formula: see text] by MQDT-assisted Rydberg spectroscopy of H
pubmed: 25681909
Biesheuvel, J. et al. Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD
pubmed: 26815886
pmcid: 4737800
Korobov, V. I., Hilico, L. & Karr, J.-P. Fundamental transitions and ionization energies of the hydrogen molecular ions with few ppt uncertainty. Phys. Rev. Lett. 118, 233001 (2017).
pubmed: 28644635
Alighanbari, S., Hansen, M. G., Korobov, V. I. & Schiller, S. Rotational spectroscopy of cold and trapped molecular ions in the Lamb–Dicke regime. Nat. Phys. 14, 555–559 (2018).
Jefferts, K. B. Hyperfine structure in the molecular ion [Formula: see text]. Phys. Rev. Lett. 23, 1476–1478 (1969).
Schiller, S. & Korobov, V. I. Test of time-dependence of the electron and nuclear masses with ultracold molecules. Phys. Rev. A 71, 032505 (2005).
Bakalov, D. & Schiller, S. The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock. Appl. Phys. B 114, 213–230 (2014); erratum 116, 777–778 (2014).
Karr, J.-Ph. [Formula: see text] and HD
Schiller, S., Bakalov, D. & Korobov, V. I. Simplest molecules as candidates for precise optical clocks. Phys. Rev. Lett. 113, 023004 (2014).
pubmed: 25062175
Beyer, A. et al. The Rydberg constant and proton size from atomic hydrogen. Science 358, 79–85 (2017).
pubmed: 28983046
Fleurbaey, H. et al. New measurement of the 1S−3S transition frequency of hydrogen: contribution to the proton charge radius puzzle. Phys. Rev. Lett. 120, 183001 (2018).
pubmed: 29775374
Bezginov, N. et al. A measurement of the atomic hydrogen Lamb shift and the proton charge radius. Science 365, 1007–1012 (2019).
pubmed: 31488684
Antognini, A. et al. Proton structure from the measurement of 2S–2P transition frequencies of muonic hydrogen. Science 339, 417–420 (2013).
pubmed: 23349284
Grémaud, B., Delande, D. & Billy, N. Highly accurate calculation of the energy levels of the [Formula: see text] molecular ion. J. Phys. B 31, 383 (1998).
Moss, R. E. Energies of low-lying vibration-rotation levels of [Formula: see text] and its isotopomers. J. Phys. B 32, L89–L91 (1999).
Taylor, J. M., Yan, Z.-C., Dalgarno, A. & Babb, J. F. Variational calculations on the hydrogen molecular ion. Mol. Phys. 97, 25–33 (1999).
Tiesinga, E., Mohr, P. J., Newell, D. B. & Taylor, B. N. Values of fundamental physical constants. NIST https://physics.nist.gov/cuu/Constants/index.html (2019).
Wolf, F. et al. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature 530, 457–460 (2016).
pubmed: 26855427
Chou, C. et al. Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature 545, 203–207 (2017).
pubmed: 28492258
Schneider, T., Roth, B., Duncker, H., Ernsting, I. & Schiller, S. All-optical preparation of molecular ions in the rovibrational ground state. Nat. Phys. 6, 275–278 (2010).
Roth, B., Blythe, P., Wenz, H., Daerr, H. & Schiller, S. Ion-neutral chemical reactions between ultracold localized ions and neutral molecules with single-particle resolution. Phys. Rev. A 73, 042712 (2006).
Schiller, S., Roth, B., Lewen, F., Ricken, O. & Wiedner, M. Ultra-narrow-linewidth continuous-wave THz sources based on multiplier chains. Appl. Phys. B 95, 55–61 (2009).
Bakalov, D., Korobov, V. I. & Schiller, S. High-precision calculation of the hyperfine structure of the HD
pubmed: 17280275
Schiller, S. & Korobov, V. I. Canceling spin-dependent contributions and systematic shifts in precision spectroscopy of molecular hydrogen ions. Phys. Rev. A 98, 022511 (2018).
Bakalov, D., Korobov, V. I. & Schiller, S. Magnetic field effects in the transitions of the HD
Korobov, V. I., Koelemeij, J. C. J., Hilico, L. & Karr, J.-P. Theoretical hyperfine structure of the molecular hydrogen ion at the 1 ppm level. Phys. Rev. Lett. 116, 053003 (2016).
pubmed: 26894709
Menasian, S. C. & Dehmelt, H. G. High-resolution study of (1,1/2,1/2)−(1,1/2,3/2) HFS transition in [Formula: see text]. Bull. Am. Phys. Soc. 18, 408 (1973).
Heiße, F. et al. High-precision mass spectrometer for light ions. Phys. Rev. A 100, 022518 (2019).
Fink, D. J. & Myers, E. G. Deuteron-to-proton mass ratio from the cyclotron frequency ratio of [Formula: see text] to D
pubmed: 31976707
Sturm, S. et al. High-precision measurement of the atomic mass of the electron. Nature 506, 467–470 (2014).
pubmed: 24553144
Pastor, P. C. et al. Absolute frequency measurements of the 2
pubmed: 14753933
Hori, M. et al. Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to-electron mass ratio. Science 354, 610–614 (2016).
pubmed: 27811273
Rengelink, R. J. et al. Precision spectroscopy of helium in a magic wavelength optical dipole trap. Nat. Phys. 14, 1132–1137 (2018).
Hori, M. et al. Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio. Nature 475, 484–488 (2011).
pubmed: 21796208
Udem, T. Quantum electrodynamics and the proton size. Nat. Phys. 14, 632–632 (2018); correction 14, 767 (2018).
Schiller, S., Bakalov, D., Bekbaev, A. K. & Korobov, V. I. Static and dynamic polarizability and the Stark and blackbody-radiation frequency shifts of the molecular hydrogen ions [Formula: see text], HD
Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in Paul trap. J. Appl. Phys. 83, 5025–5033 (1998).
Shen, J., Borodin, A. & Schiller, S. A simple method for characterization of the magnetic field in an ion trap using Be
Bakalov, D. & Schiller, S. The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock. Appl. Phys. B 114, 213–230 (2014); corrigendum 116, 777–778 (2014).
Salumbides, E. J., Ubachs, W. & Korobov, V. I. Bounds on fifth forces at the sub-Å length scale. J. Mol. Spectrosc. 300, 65–69 (2014).
Pavanello, M., Tung, W.-C. & Adamowicz, L. Determination of deuteron quadrupole moment from calculations of the electric field gradient in D