Massively parallel coherent laser ranging using a soliton microcomb.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
05 2020
Historique:
received: 31 10 2019
accepted: 16 03 2020
entrez: 15 5 2020
pubmed: 15 5 2020
medline: 15 5 2020
Statut: ppublish

Résumé

Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)

Identifiants

pubmed: 32405018
doi: 10.1038/s41586-020-2239-3
pii: 10.1038/s41586-020-2239-3
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

164-170

Références

Bostick, H. A carbon dioxide laser radar system. IEEE J. Quantum Electron. 3, 232 (1967).
Urmson, C. et al. Autonomous driving in urban environments: Boss and the urban challenge. J. Field Robot. 25, 425–466 (2008).
Behroozpour, B., Sandborn, P., Wu, M. & Boser, B. E. Lidar system architectures and circuits. IEEE Commun. Mag. 55, 135–142 (2017).
MacDonald, R. I. Frequency domain optical reflectometer. Appl. Opt. 20, 1840–1844 (1981).
pubmed: 20332843
Uttam, D. & Culshaw, B. Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique. J. Lightwave Technol. 3, 971–977 (1985).
Gnanalingam, S. & Weekes, K. Weak echoes from the ionosphere with radio waves of frequency 1.42 Mc./s. Nature 170, 113–114 (1952).
Hymans, A. J. & Lait, J. Analysis of a frequency-modulated continuous-wave ranging system. Proc. IEE B 107, 365 (1960).
Roos, P. A. et al. Ultrabroadband optical chirp linearization for precision metrology applications. Opt. Lett. 34, 3692–3694 (2009).
pubmed: 19953164
Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
pubmed: 30093576
Lucas, E., Guo, H., Jost, J., Karpov, M. & Kippenberg, T. J. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators. Phys. Rev. A 95, 043822 (2017).
McManamon, P. F. et al. Optical phased array technology. Proc. IEEE 84, 268–298 (1996).
Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013).
pubmed: 23302859
Levinson, J. et al. Towards fully autonomous driving: systems and algorithms. Proc. IEEE Intelligent Vehicles Symp. 163–168, https://doi.org/10.1109/IVS.2011.5940562 (2011).
Maddern, W., Pascoe, G., Linegar, C. & Newman, P. 1 year, 1000 km: the Oxford robotcar dataset. Int. J. Robot. Res. 36, 3–15 (2017).
Bosch, T. Laser ranging: a critical review of usual techniques for distance measurement. Opt. Eng. 40, 10 (2001).
Schwarz, B. Mapping the world in 3D. Nat. Photonics 4, 429–430 (2010).
Mitchell, E. W. et al. Coherent laser ranging for precision imaging through flames. Optica 5, 988 (2018).
Petit, J., Stottelaar, B., Feiri, M. & Kargl, F. Remote attacks on automated vehicles sensors: experiments on camera and LiDAR. Black Hat Europe Conf. 11, 1–13 (2015); https://www.blackhat.com/docs/eu-15/materials/eu-15-Petit-Self-Driving-And-Connected-Cars-Fooling-Sensors-And-Tracking-Drivers-wp1.pdf .
Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photonics 8, 145–152 (2014).
Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics 4, 471–476 (2010).
Suh, M. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).
pubmed: 29472476
Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).
pubmed: 29472477
Kuse, N. & Fermann, M. Frequency-modulated comb LiDAR. APL Photonics 4, 106105 (2019).
Pfeiffer, M. H. P. et al. Photonic damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 3, 20–25 (2016).
Karpov, M. et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett. 116, 103902 (2016).
pubmed: 27015482
Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2017).
Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).
pubmed: 10034681
Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).
Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun. 8, 14869 (2017).
pubmed: 28332495 pmcid: 5376647
Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities: publisher’s note. Opt. Lett. 41, 3722 (2016).
pubmed: 27519072
Wang, Y., Anderson, M., Coen, S., Murdoch, S. G. & Erkintalo, M. Stimulated Raman scattering imposes fundamental limits to the duration and bandwidth of temporal cavity solitons. Phys. Rev. Lett. 120, 053902 (2018).
pubmed: 29481150
Guo, H. et al. Intermode breather solitons in optical microresonators. Phys. Rev. X 7, 041055 (2017).
Klein, T. et al. Multi-MHz retinal OCT. Biomed. Opt. Express 4, 1890 (2013).
pubmed: 24156052 pmcid: 3799654
Jiang, Y., Karpf, S. & Jalali, B. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat. Photonics 14, 14–18 (2020).
Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).
pubmed: 28593968
Liu, J. et al. Monolithic piezoelectric control of soliton microcombs. Preprint at https://arxiv.org/abs/1912.08686 (2020).
Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).
pubmed: 26260955 pmcid: 4918344
Pavlov, N. et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photonics 12, 694–698 (2018).
Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).
pubmed: 30858615
Metcalf, A. J., Torres-Company, V., Leaird, D. E. & Weiner, A. M. High-power broadly tunable electrooptic frequency comb generator. IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
Pfeiffer, M. H. P. et al. Photonic damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
Liu, J. et al. Ultralow-power chip-based soliton microcombs for photonic integration. Optica 5, 1347–1353 (2018).
Pfeiffer, M. H. P. et al. Ultra-smooth silicon nitride waveguides based on the damascene reflow process: fabrication and loss origins. Optica 5, 884–892 (2018).
Liu, J. et al. Double inverse nanotapers for efficient light coupling to integrated photonic devices. Opt. Lett. 43, 3200–3203 (2018).
pubmed: 30004531
Ahn, T. J. & Kim, D. Y. Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and hilbert transformation. Appl. Opt. 46, 2394 (2007).
pubmed: 17429450
Feneyrou, P. et al. Frequency-modulated multifunction LiDAR for anemometry, range finding, and velocimetry: 1. Theory and signal processing. Appl. Opt. 56, 9663 (2017).
pubmed: 29240111
Shen, B. et al. Integrated turnkey soliton microcombs operated at CMOS frequencies. Preprint at https://arxiv.org/abs/1911.02636 (2019).
Zhang, X., Pouls, J. & Wu, M. C. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW lidar. Opt. Express 27, 9965 (2019).
pubmed: 31045144
Martin, A. et al. Photonic integrated circuit-based FMCW coherent LiDAR. J. Lightwave Technol. 36, 4640–4645 (2018).
Fang, Q. et al. WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability. Opt. Express 18, 5106–5113 (2010).
pubmed: 20389523
Ahn, D. et al. High performance, waveguide integrated Ge photodetectors. Opt. Express 15, 3916 (2007).
pubmed: 19532633
Piels, M., Bauters, J. F., Davenport, M. L., Heck, M. J. R. & Bowers, J. E. Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III-V/silicon photodetectors. J. Lightwave Technol. 32, 817–823 (2014).

Auteurs

Johann Riemensberger (J)

Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.

Anton Lukashchuk (A)

Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.

Maxim Karpov (M)

Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.

Wenle Weng (W)

Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.

Erwan Lucas (E)

Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.

Junqiu Liu (J)

Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.

Tobias J Kippenberg (TJ)

Laboratory of Photonics and Quantum Measurements (LPQM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. tobias.kippenberg@epfl.ch.

Classifications MeSH