Engineering covalently bonded 2D layered materials by self-intercalation.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
05 2020
Historique:
received: 02 11 2019
accepted: 04 03 2020
entrez: 15 5 2020
pubmed: 15 5 2020
medline: 15 5 2020
Statut: ppublish

Résumé

Two-dimensional (2D) materials

Identifiants

pubmed: 32405019
doi: 10.1038/s41586-020-2241-9
pii: 10.1038/s41586-020-2241-9
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

171-177

Subventions

Organisme : European Research Council
Pays : International

Références

Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).
pubmed: 23511414
Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).
pubmed: 29670263
Jin, C. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018).
pubmed: 30397296
Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).
pubmed: 29517002
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
pubmed: 16027370
Wan, J. et al. Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem. Soc. Rev. 45, 6742–6765 (2016).
pubmed: 27704060
Friend, R. H. & Yoffe, A. D. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 36, 1–94 (1987).
Wang, X., Shen, X., Wang, Z., Yu, R. & Chen, L. Atomic-scale clarification of structural transition of MoS
pubmed: 25363475
Tan, S. J. R. et al. Chemical stabilization of 1T′ phase transition metal dichalcogenides with giant optical Kerr nonlinearity. J. Am. Chem. Soc. 139, 2504–2511 (2017).
pubmed: 28112926
Kanetani, K. et al. Ca intercalated bilayer graphene as a thinnest limit of superconducting C
pubmed: 23139407
Yang, J. et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019).
pubmed: 31451781
Cui, F. et al. Controlled growth and thickness-dependent conduction-type transition of 2D ferrimagnetic Cr
Mortazavi, M., Wang, C., Deng, J., Shenoy, V. B. & Medhekar, N. V. Ab initio characterization of layered MoS
Fu, D. et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139, 9392–9400 (2017).
pubmed: 28633527
Chen, J. et al. Homoepitaxial growth of large-scale highly organized transition metal dichalcogenide patterns. Adv. Mater. 30, 1704674 (2018).
Liao, M. et al. Twist angle-dependent conductivities across MoS
pubmed: 30287809 pmcid: 6172227
Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi
pubmed: 22830589
Guilmeau, E., Barbier, T., Maignan, A. & Chateigner, D. Thermoelectric anisotropy and texture of intercalated TiS
Wang, M. et al. Chemical intercalation of heavy metal, semimetal, and semiconductor atoms into 2D layered chalcogenides. 2D Mater. 5, 045005 (2018).
Dungey, K. E., Curtis, M. D. & Penner-Hahn, J. E. Structural characterization and thermal stability of MoS
Gong, Y. et al. Spatially controlled doping of two-dimensional SnS
pubmed: 29483599
Chen, Z. et al. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat. Commun. 8, 14548 (2017).
pubmed: 28230105 pmcid: 5331331
Liu, C. et al. Dynamic Ag
Bouwmeester, H. J. M., van der Lee, A., van Smaalen, S. & Wiegers, G. A. Order–disorder transition in silver-intercalated niobium disulfide compounds. II. Magnetic and electrical properties. Phys. Rev. B 43, 9431–9435 (1991).
Wan, C. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS
pubmed: 25849369
Jeong, S. et al. Tandem intercalation strategy for single-layer nanosheets as an effective alternative to conventional exfoliation processes. Nat. Commun. 6, 5763 (2015).
pubmed: 25575047
O’Brien, E. S. et al. Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal. Nat. Chem. 9, 1170–1174 (2017).
pubmed: 29168490
Kumar, P., Skomski, R. & Pushpa, R. Magnetically ordered transition-metal-intercalated WSe
pubmed: 31457349 pmcid: 6645032
Kim, S. et al. Interstitial Mo-assisted photovoltaic effect in multilayer MoSe
Zhang, M. et al. Electron density optimization and the anisotropic thermoelectric properties of Ti self-intercalated Ti
pubmed: 30160096
Wang, S. et al. Shape evolution of monolayer MoS
Zhao, X. et al. Mo-terminated edge reconstructions in nanoporous molybdenum disulfide film. Nano Lett. 18, 482–490 (2018).
pubmed: 29253330
Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).
pubmed: 29410499
Azizi, A. et al. Spontaneous formation of atomically thin stripes in transition metal dichalcogenide monolayers. Nano Lett. 16, 6982–6987 (2016).
pubmed: 27673342
Motome, Y., Furukawa, N. & Nagaosa, N. Competing orders and disorder-induced insulator to metal transition in manganites. Phys. Rev. Lett. 91, 167204 (2003).
pubmed: 14611436
Parish, M. M. & Littlewood, P. B. Non-saturating magnetoresistance in heavily disordered semiconductors. Nature 426, 162–165 (2003).
pubmed: 14614501
Jiang, Z. et al. Structural and proximity-induced ferromagnetic properties of topological insulator-magnetic insulator heterostructures. AIP Adv. 6, 055809 (2016).
Jiang, Z. et al. Independent tuning of electronic properties and induced ferromagnetism in topological insulators with heterostructure approach. Nano Lett. 15, 5835–5840 (2015).
pubmed: 26288309
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Zener, C. Interaction between the d shells in the transition metals. Phys. Rev. 81, 440–444 (1951).
Coelho, P. M. et al. Charge density wave state suppresses ferromagnetic ordering in VSe
Haastrup, S. et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, 042002 (2018).
Karthikeyan, J., Komsa, H.-P., Batzill, M. & Krasheninnikov, A. V. Which transition metal atoms can be embedded into two-dimensional molybdenum dichalcogenides and add magnetism? Nano Lett. 19, 4581–4587 (2019).
pubmed: 31251639
Wang, H. et al. High-quality monolayer superconductor NbSe
pubmed: 28855521 pmcid: 5577275
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab Initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
pubmed: 10062328
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
Dudarev, S. L. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505 (1998).
Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).
pubmed: 21393795
Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

Auteurs

Xiaoxu Zhao (X)

Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
Department of Chemistry and Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore.

Peng Song (P)

Department of Chemistry and Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore.

Chengcai Wang (C)

Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.

Anders C Riis-Jensen (AC)

CAMD and Center for Nanostructured Graphene (CNG), Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.

Wei Fu (W)

Department of Chemistry and Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore.

Ya Deng (Y)

School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.

Dongyang Wan (D)

NUSNNI-NanoCore, National University of Singapore, Singapore, Singapore.

Lixing Kang (L)

School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.

Shoucong Ning (S)

Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.

Jiadong Dan (J)

Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.

T Venkatesan (T)

Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
NUSNNI-NanoCore, National University of Singapore, Singapore, Singapore.

Zheng Liu (Z)

School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.

Wu Zhou (W)

School of Physical Sciences and CAS Centre for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China.

Kristian S Thygesen (KS)

CAMD and Center for Nanostructured Graphene (CNG), Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.

Xin Luo (X)

State Key Laboratory of Optoelectronic Materials and Technologies, Centre for Physical Mechanics and Biophysics, Sun Yat-sen University, Guangzhou, China. luox77@mail.sysu.edu.cn.

Stephen J Pennycook (SJ)

Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore. steve.pennycook@nus.edu.sg.

Kian Ping Loh (KP)

Department of Chemistry and Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore. chmlohkp@nus.edu.sg.

Classifications MeSH