Association between Trunk Muscle Strength, Lumbar Spine Bone Mineral Density, Lumbar Scoliosis Angle, and Skeletal Muscle Volume and Locomotive Syndrome in Elderly Individuals: A Dual-Energy X-ray Absorptiometry Study.
Bone marrow density
Locomotive syndrome
Lumbar scoliosis
Skeletal muscle mass
Trunk muscle strength
Journal
Spine surgery and related research
ISSN: 2432-261X
Titre abrégé: Spine Surg Relat Res
Pays: Japan
ID NLM: 101718059
Informations de publication
Date de publication:
2020
2020
Historique:
received:
25
09
2019
accepted:
05
11
2019
entrez:
15
5
2020
pubmed:
15
5
2020
medline:
15
5
2020
Statut:
epublish
Résumé
The present study aimed to investigate the association between trunk muscle strength, lumbar spine bone mineral density (BMD), lumbar scoliosis angle (LSA), and appendicular skeletal muscle mass index (ASMI) and the severity locomotive syndrome (LS) using dual-energy X-ray absorptiometry (DXA) technology in elderly individuals. In this cross-sectional study, we enrolled 168 individuals aged >60 years. We measured their trunk muscle strength (flexion and extension) and BMD, LSA, and ASMI using DXA. We defined degenerative lumbar scoliosis (DLS) as LSA ≥ 10° by the Cobb method using the DXA image. The locomotor function was evaluated using the timed up-and-go (TUG) test and the 25-question Geriatric Locomotive Function Scale (GLFS-25) score. Normal locomotor function, LS-1, and LS-2 were defined as a GLFS-25 score of <7, ≥7 and <16, and ≥16, respectively. We compared the three groups, analyzing the associations between all variables and the locomotor function using univariate and multivariate analyses. Although there was no significant difference in sex ratio, BMD, ASMI, and trunk-flexor strength, significant differences were observed in age (p < 0.01), the prevalence of DLS (p = 0.02), trunk-extensor strength (p < 0.01), and trunk-extensor/flexor strength ratio (p < 0.01) among the three groups. In multiple regression analyses, the significant risk factors of the TUG test were age (β = 0.26), body mass index (β = 0.36), LSA (β = 0.15), ASMI (β = -0.30), and trunk-extensor strength (β = -0.19), whereas the significant factor of the GLFS-25 score was trunk-extensor strength (β = -0.31). The results indicate that it is clinically important for LS to pay careful attention not only to BMD but also to lumbar scoliosis when DXA examination of the lumbar spine is routinely conducted. Moreover, it is essential to note that trunk-extensor strength is more important than trunk-flexor strength in maintaining locomotor function in elderly individuals.
Identifiants
pubmed: 32405564
doi: 10.22603/ssrr.2019-0083
pmc: PMC7217680
doi:
Types de publication
Journal Article
Langues
eng
Pagination
164-170Informations de copyright
Copyright © 2020 by The Japanese Society for Spine Surgery and Related Research.
Déclaration de conflit d'intérêts
Conflicts of Interest: The authors declare that there are no relevant conflicts of interest.
Références
Spine (Phila Pa 1976). 1981 Nov-Dec;6(6):567-72
pubmed: 7336279
Spine (Phila Pa 1976). 1985 Oct;10(8):765-72
pubmed: 2934831
J Bone Miner Res. 1989 Jun;4(3):421-32
pubmed: 2763878
J Gerontol A Biol Sci Med Sci. 2013 Aug;68(8):976-83
pubmed: 23633167
Spine (Phila Pa 1976). 2003 Mar 15;28(6):602-6
pubmed: 12642769
Nagoya J Med Sci. 2013 Feb;75(1-2):47-55
pubmed: 23544268
J Orthop Sci. 2016 Jan;21(1):74-8
pubmed: 26671571
Spine (Phila Pa 1976). 2002 Feb 15;27(4):387-92
pubmed: 11840105
Geriatr Gerontol Int. 2017 Jan;17(1):54-60
pubmed: 26792269
Am J Med. 2002 Mar;112(4):281-9
pubmed: 11893367
Stat Methods Med Res. 1998 Sep;7(3):301-17
pubmed: 9803527
Eur J Appl Physiol. 2010 Sep;110(1):57-65
pubmed: 20390291
Arch Phys Med Rehabil. 2005 Jun;86(6):1102-7
pubmed: 15954047
J Exerc Rehabil. 2018 Feb 26;14(1):72-77
pubmed: 29511655
J Orthop Sci. 2012 Nov;17(6):782-8
pubmed: 22961424
J Bone Miner Res. 2005 Feb;20(2):195-201
pubmed: 15647812
Am J Epidemiol. 2004 Feb 15;159(4):413-21
pubmed: 14769646
J Gerontol A Biol Sci Med Sci. 2006 Oct;61(10):1059-64
pubmed: 17077199
J Orthop Sci. 1998;3(1):3-9
pubmed: 9654549
J Orthop Sci. 2013 Jul;18(4):618-26
pubmed: 23543267
J Orthop Sci. 2008 Jan;13(1):1-2
pubmed: 18274847
Spine (Phila Pa 1976). 2006 Jun 15;31(14):1614-20
pubmed: 16778698
J Am Geriatr Soc. 1991 Feb;39(2):142-8
pubmed: 1991946
J Occup Health. 2019 Jul;61(4):311-319
pubmed: 30982230
J Orthop Sci. 2012 Mar;17(2):163-72
pubmed: 22222445
Eur Spine J. 2013 Jun;22(6):1346-53
pubmed: 23443680
J Back Musculoskelet Rehabil. 2014;27(3):371-6
pubmed: 24561784
Geriatr Gerontol Int. 2013 Oct;13(4):958-63
pubmed: 23452074
J Orthop Sci. 2016 May;21(3):361-5
pubmed: 26874646
Spine (Phila Pa 1976). 2005 May 1;30(9):1082-5
pubmed: 15864163
Am J Epidemiol. 1998 Apr 15;147(8):755-63
pubmed: 9554417
Acta Reumatol Port. 2011 Oct-Dec;36(4):327-35
pubmed: 22472924
Orthopedics. 2012 Jul 1;35(7):e1073-8
pubmed: 22784903
Spine (Phila Pa 1976). 2013 Jun 1;38(13):E803-12
pubmed: 23722572
J Clin Densitom. 2003 Summer;6(2):75-85
pubmed: 12794229
J Orthop Sci. 2009 Jan;14(1):1-2
pubmed: 19214680
Spine (Phila Pa 1976). 2005 Mar 15;30(6):682-8
pubmed: 15770185
Calcif Tissue Int. 1997 May;60(5):430-3
pubmed: 9115160
J Bone Miner Res. 2014 Feb;29(2):399-407
pubmed: 23873699
Spine (Phila Pa 1976). 1982 Jul-Aug;7(4):355-9
pubmed: 6215719
J Orthop Sci. 2015 Nov;20(6):1085-9
pubmed: 26345242
Clin Rev Bone Miner Metab. 2016;14:56-67
pubmed: 27375370
Aging Clin Exp Res. 2016 Jun;28(3):429-34
pubmed: 26319656
J Orthop Sci. 2011 Sep;16(5):489-91
pubmed: 21789538