Multi-parametric liver tissue characterization using MR fingerprinting: Simultaneous T

MR fingerprinting T1 mapping T2 mapping T2* mapping fat fraction liver MRI quantitative mapping

Journal

Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245

Informations de publication

Date de publication:
11 2020
Historique:
received: 07 01 2020
revised: 23 03 2020
accepted: 16 04 2020
pubmed: 15 5 2020
medline: 15 5 2021
entrez: 15 5 2020
Statut: ppublish

Résumé

Quantitative T A gradient echo (GRE) liver MRF sequence with nine readouts per TR, low flip angles (5-15°), varying magnetisation preparation and golden angle radial trajectory is acquired at 1.5T to encode T The proposed water T A nine-echo liver MRF sequence allows for quantitative multi-parametric liver tissue characterization in a single breath-hold scan of ~14 s. Future work will aim to validate the proposed approach in patients with liver disease.

Identifiants

pubmed: 32406125
doi: 10.1002/mrm.28311
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2625-2635

Subventions

Organisme : British Heart Foundation
ID : RG/20/1/34802
Pays : United Kingdom
Organisme : British Heart Foundation
ID : RE/18/2/34213
Pays : United Kingdom
Organisme : Department of Health
Pays : United Kingdom

Informations de copyright

© 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

Références

Younossi Z, Tacke F, Arrese M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019;69:2672-2682.
Dowman JK, Tomlinson JW, Newsome PN. Systematic review: The diagnosis and staging of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2011;33:525-540.
Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313-1321.
Meisamy S, Hines CDG, Hamilton G, et al. Quantification of hepatic steatosis with T1-independent, T2*-corrected MR imaging with spectral modeling of fat: Blinded comparison with MR spectroscopy. Radiology. 2011;258:767-775.
Reeder SB, Sirlin CB. Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin N Am. 2010;18:337-357.
Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood. 2005;106:1460-1465.
Thomsen C, Christoffersen P, Henriksen O, Juhl E. Prolonged T1 in patients with liver cirrhosis: An in vivo MRI study. Magn Reson Imaging. 1990;8:599-604.
Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: Technique, analysis, and clinical applications. J Magn Reson Imaging. 2013;37:544-555.
Banerjee R, Pavlides M, Tunnicliffe EM, et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol. 2014;60:69-77.
Pavlides M, Banerjee R, Sellwood J, et al. Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease. J Hepatol. 2016;64:308-315.
Yu H, McKenzie CA, Shimakawa A, et al. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging. 2007;26:1153-1161.
Chen Y, Jiang Y, Pahwa S, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology. 2016;279:278-286.
Reeder SB, Pineda AR, Wen Z, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): Application with fast spin-echo imaging. Magn Reson Med. 2005;54:636-644.
Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med. 2008;60:1122-1134.
Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature. 2013;495:187-192.
Ostenson J, Damon BM, Welch EB. MR fingerprinting with simultaneous T1, T2, and fat signal fraction estimation with integrated B0 correction reduces bias in water T1 and T2 estimates. Magn Reson Imaging. 2019;60:7-19.
Jaubert O, Cruz G, Bustin A, et al. Water-fat Dixon cardiac magnetic resonance fingerprinting. Magn Reson Med. 2020;83:2107-2123.
Hernando D, Kellman P, Haldar JP, Liang Z-P. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med. 2010;63:79-90.
Nezafat R, Stuber M, Ouwerkerk R, Gharib AM, Desai MY, Pettigrew RI. B1-insensitiveT2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn Reson Med. 2006;55:858-864.
Hamilton JI, Jiang Y, Ma D, et al. Investigating and reducing the effects of confounding factors for robust T1 and T2 mapping with cardiac MR fingerprinting. Magn Reson Imaging. 2018;53:40-51.
Guzek B, Korzdorfer G, Nittka M, Pfeuffer J. Influence of Off-resonance on FISP magnetic resonance fingerprinting (FISP-MRF). Proc Intl Soc Mag Reson Med. Paris, France. 2018;26:4264.
Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med. 2015;74:1621-1631.
Bustin A, Cruz G, Jaubert O, Karina L, Botnar RM, Prieto C. High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast magnetic resonance imaging. Magn Reson Med. 2019;81:3705-3719.
Assländer J, Cloos MA, Knoll F, Sodickson DK, Hennig J, Lattanzi R. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. Magn Reson Med. 2018;79:83-96.
McGivney DF, Pierre E, Ma D, et al. SVD compression for magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging. 2014;33:2311-2322.
Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153:189-194.
Yeung HN, Kormos DW. Separation of true fat and water images by correcting magnetic field inhomogeneity in situ. Radiology. 1986;159:783-786.
Hamilton G, Smith DL, Bydder M, Nayak KS, Hu HH. MR properties of brown and white adipose tissues. J Magn Reson Imaging. 2011;34:468-473.
Hernando D, Haldar JP, Sutton BP, Ma J, Kellman P, Liang Z-P. Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med. 2008;59:571-580.
Weigel M. Extended phase graphs: Dephasing, RF pulses, and echoes-Pure and simple. J Magn Reson Imaging. 2015;41:266-295.
Ma D, Coppo S, Chen Y, et al. Slice profile and B1 corrections in 2D magnetic resonance fingerprinting. Magn Reson Med. 2017;78:1781-1789.
Captur G, Gatehouse P, Kellman P, et al. A T1 and ECV phantom for global T1 mapping quality assurance: The T1 mapping and ECV standardisation in CMR (T1MES) program. J Cardiovasc Magn Reson. 2016;18:W14.
Liu C-Y, McKenzie CA, Yu H, Brittain JH, Reeder SB. Fat quantification with IDEAL gradient echo imaging: Correction of bias from T1 and noise. Magn Reson Med. 2007;58:354-364.
De Bazelaire CMJ, Duhamel GD, Rofsky NM, Alsop DCMR. Imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: Preliminary results. Radiology. 2004;230:652-659.
Schwenzer NF, Machann J, Haap MM, et al. T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol. 2008;43:854-860.
Wilman HR, Kelly M, Garratt S, et al. Characterisation of liver fat in the UK Biobank cohort Lu S-N, editor. PLoS ONE. 2017;12:e0172921.
Marty B, Carlier PG. MR fingerprinting for water T1 and fat fraction quantification in fat infiltrated skeletal muscles. Magn Reson Med. 2020;83:621-634.
Cencini M, Biagi L, Kaggie JD, Schulte RF, Tosetti M, Buonincontri G. Magnetic resonance fingerprinting with dictionary-based fat and water separation (DBFW MRF): A multi-component approach. Magn Reson Med. 2019;81:3032-3045.
Berglund J, Johansson L, Ahlström H, Kullberg J. Three-point dixon method enables whole-body water and fat imaging of obese subjects. Magn Reson Med. 2010;63:1659-1668.
Koolstra K, Webb AG, Veeger TTJ, Kan HE, Koken P, Börnert P. Water-fat separation in spiral magnetic resonance fingerprinting for high temporal resolution tissue relaxation time quantification in muscle. Magn Reson Med. 2020;84:646-662.
Nolte T, Gross-Weege N, Doneva M, et al. Spiral blurring correction with water-fat separation for magnetic resonance fingerprinting in the breast. Magn Reson Med. 2020;83:1192-1207.
Hilbert T, Xia D, Block KT, et al. Magnetization transfer in magnetic resonance fingerprinting. Magn Reson Med. 2020;84:128-141.
Flassbeck S, Schmidt S, Bachert P, Ladd ME, Schmitter S. Flow MR fingerprinting. Magn Reson Med. 2019;81:2536-2550.
Malik SJ, Teixeira RPAG, Hajnal JV. Extended phase graph formalism for systems with magnetization transfer and exchange. Magn Reson Med. 2018;80:767-779.
Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S. T1 measurements in the human myocardium: The effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med. 2013;70:664-670.
Roujol S, Weingärtner S, Foppa M, et al. Accuracy, precision, and reproducibility of four T1 mapping sequences: A head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology. 2014;272:683-689.
Tirkes T, Zhao X, Lin C, et al. Evaluation of variable flip angle, MOLLI, SASHA, and IR-SNAPSHOT pulse sequences for T1 relaxometry and extracellular volume imaging of the pancreas and liver. Magn Reson Mater Phys, Biol Med. 2019;32:559-566.
Baeßler B, Schaarschmidt F, Stehning C, Schnackenburg B, Maintz D, Bunck AC. A systematic evaluation of three different cardiac T2-mapping sequences at 1.5 and 3T in healthy volunteers. Eur J Radiol. 2015;84:2161-2170.
Hamilton JI, Jiang Y, Chen Y, et al. MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. Magn Reson Med. 2017;77:1446-1458.
Bachtiar V, Kelly MD, Wilman HR, et al. Repeatability and reproducibility of multiparametric magnetic resonance imaging of the liver. PLoS ONE. 2019;14:e0214921.
Le T-A, Chen J, Changchien C, et al. Effect of colesevelam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: A randomized controlled trial. Hepatology. 2012;56:922-932.
Middleton MS, Heba ER, Hooker CA, et al. Agreement between magnetic resonance imaging proton density fat fraction measurements and pathologist-assigned steatosis grades of liver biopsies from adults with nonalcoholic steatohepatitis. Gastroenterology. 2017;153:753-761.
Loomba R, Sirlin CB, Ang B, et al. Ezetimibe for the treatment of nonalcoholic steatohepatitis: Assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). Hepatology. 2015;61:1239-1250.
Tunnicliffe EM, Banerjee R, Pavlides M, Neubauer S, Robson MD. A model for hepatic fibrosis: The competing effects of cell loss and iron on shortened modified Look-Locker inversion recovery T1 (shMOLLI- T1) in the liver. J Magn Reson Imaging. 2017;45:450-462.

Auteurs

Olivier Jaubert (O)

School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.

Cristobal Arrieta (C)

Biomedical Imaging Center and Millennium Nucleus for Cardiovascular Magnetic Resonance, Pontificia Universidad Católica de Chile, Santiago, Chile.

Gastão Cruz (G)

School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.

Aurélien Bustin (A)

School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.

Torben Schneider (T)

Philips Healthcare, Guilford, United Kingdom.

Georgios Georgiopoulos (G)

School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.

Pier-Giorgio Masci (PG)

School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.

Carlos Sing-Long (C)

Biomedical Imaging Center and Millennium Nucleus for Cardiovascular Magnetic Resonance, Pontificia Universidad Católica de Chile, Santiago, Chile.
Instituto de Ingeniería Matemática y Computacional and Millennium Nucleus for the Discovery of Structures in Complex Data, Pontificia Universidad Católica de Chile, Santiago, Chile.

Rene M Botnar (RM)

School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.

Claudia Prieto (C)

School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH