Development of the amniote ventrolateral body wall.


Journal

Developmental dynamics : an official publication of the American Association of Anatomists
ISSN: 1097-0177
Titre abrégé: Dev Dyn
Pays: United States
ID NLM: 9201927

Informations de publication

Date de publication:
01 2021
Historique:
received: 11 03 2020
revised: 30 04 2020
accepted: 30 04 2020
pubmed: 15 5 2020
medline: 19 1 2022
entrez: 15 5 2020
Statut: ppublish

Résumé

In vertebrates, the trunk consists of the musculoskeletal structures of the back and the ventrolateral body wall, which together enclose the internal organs of the circulatory, digestive, respiratory and urogenital systems. This review gives an overview on the development of the thoracic and abdominal wall during amniote embryogenesis. Specifically, I briefly summarize relevant historical concepts and the present knowledge on the early embryonic development of ribs, sternum, intercostal muscles and abdominal muscles with respect to anatomical bauplan, origin and specification of precursor cells, initial steps of pattern formation, and cellular and molecular regulation of morphogenesis.

Identifiants

pubmed: 32406962
doi: 10.1002/dvdy.193
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

39-59

Informations de copyright

© 2020 The Author. Developmental Dynamics published by Wiley Periodicals LLC on behalf of American Association of Anatomists.

Références

Scaal M. Early development of the vertebral column. Semin Cell Dev Biol. 2016;49:83-91. https://doi.org/10.1016/j.semcdb.2015.11.003.
Lawson LY, Harfe BD. Developmental mechanisms of intervertebral disc and vertebral column formation. Wiley Interdiscip Rev Dev Biol. 2017;6:6(6). https://doi.org/10.1002/wdev.283.
Williams S, Alkhatib B, Serra R. Development of the axial skeleton and intervertebral disc. Curr Top Dev Biol. 2019;133:49-90. https://doi.org/10.1016/bs.ctdb.2018.11.018.
Brewer S, Williams T. Finally, a sense of closure? Animal models of human ventral body wall defects. Bioessays. 2004;26(12):1307-1321. https://doi.org/10.1002/bies.20137.
Starck D. Vergleichende Anatomie der Wirbeltiere. Berlin/Heidelberg/New York: Springer; 1979.
Romer AS. The Vertebrate Body. 5th ed. Philadelphia, PA: Saunders; 1978.
Wettstein Otto von. Rhynchocephalia. Berlin: Walter de Gruyter; 1937.
Schummer A. Anatomie der Hausvögel. Paul Parey: Berlin, Hamburg; 1973.
Romanoff AL. The Avian Embryo. Structural and Functional Development. New York, NY: Macmillan; 1960.
Schauinsland H. Die Entwickelung der Wirbelsäule nebst Rippen und Brustbein. Jena: Gustav Fischer; 1906.
Starck D. Embryologie. 3rd ed. Stuttgart: Thieme; 1975.
Hamilton HL. Lillie's Development of the Chick. An introduction to Embryology. 3rd ed. New York, NY: Holt, Rinehart and Winston; 1965.
Straus WL Jr, Rawles ME. An experimental study of the origin of the trunk musculature and ribs in the chick. Am J Anat. 1953;92(3):471-509. https://doi.org/10.1002/aja.1000920306.
Seno T. An experimental study on the formation of the body wall in the chick. Acta Anat (Basel). 1961;45:60-82.
Pinot M. Etude experimentale de la morphogenese de la cage thoracique chez l'embryon de poulet: mecanismes et origine du materiel. J Embryol Exp Morph. 1969;21:149-164.
Christ B, Jacob HJ, Jacob M. Experimentelle Untersuchungen zur Entwicklung der Brustwand beim Hühnerembryo. Experientia. 1974;30(12):1449-1451.
Chevallier A. Role du mesoderme somitique dans le developpement de la cage thoracique de l'embryon d'oiseau. I. Origine du segment sternal et mecanismes de la differenciation des cotes. J Embryol Exp Morphol. 1975;33(2):291-311.
Kato N, Aoyama H. Dermomyotomal origin of the ribs as revealed by extirpation and transplantation experiments in chick and quail embryos. Development. 1998;125(17):3437-3443.
Huang R, Zhi Q, Schmidt C, Wilting J, Brand-Saberi B, Christ B. Sclerotomal origin of the ribs. Development. 2000;127(3):527-532.
Evans DJ. Contribution of somitic cells to the avian ribs. Dev Biol. 2003;256(1):114-126.
Olivera-Martinez I, Coltey M, Dhouailly D, Pourquie O. Mediolateral somitic origin of ribs and dermis determined by quail-chick chimeras. Development. 2000;127(21):4611-4617.
Leitges M, Neidhardt L, Haenig B, Herrmann BG, Kispert A. The paired homeobox gene Uncx4.1 specifies pedicles, transverse processes and proximal ribs of the vertebral column. Development. 2000;127(11):2259-2267.
Mansouri A, Voss AK, Thomas T, Yokota Y, Gruss P. Uncx4.1 is required for the formation of the pedicles and proximal ribs and acts upstream of Pax9. Development. 2000;127(11):2251-2258.
Bussen M, Petry M, Schuster-Gossler K, Leitges M, Gossler A, Kispert A. The T-box transcription factor Tbx18 maintains the separation of anterior and posterior somite compartments. Genes Dev. 2004;18(10):1209-1221. https://doi.org/10.1101/gad.300104 [pii].
Sweeney RMW, Watterson RL. Rib development in chick embryos analyzed by means of tantalum foil blocks. Am J Anat. 1969;126:127-150.
Sudo H, Takahashi Y, Tonegawa A, et al. Inductive signals from the somatopleure mediated by bone morphogenetic proteins are essential for the formation of the sternal component of avian ribs. Dev Biol. 2001;232(2):284-300. https://doi.org/10.1006/dbio.2001.0198 [pii].
Nowicki JL, Takimoto R, Burke AC. The lateral somitic frontier: dorso-ventral aspects of anterio-posterior regionalization in avian embryos. Mech Dev. 2003;120(2):227-240.
Burke AC, Nowicki JL. A new view of patterning domains in the vertebrate mesoderm. Dev Cell. 2003;4(2):159-165.
Remak R. Untersuchungen über die Entwickelung der Wirbelthiere. Berlin: Reimer; 1850.
Bagnall KM, Higgins SJ, Sanders EJ. The contribution made by a single somite to the vertebral column: experimental evidence in support of resegmentation using the chick-quail chimaera model. Development. 1988;103(1):69-85.
Huang R, Zhi Q, Brand-Saberi B, Christ B. New experimental evidence for somite resegmentation. Anat Embryol (Berl). 2000;202(3):195-200.
Huang R, Zhi Q, Neubuser A, et al. Function of somite and somitocoele cells in the formation of the vertebral motion segment in avian embryos. Acta Anat (Basel). 1996;155(4):231-241.
Smith TG, Sweetman D, Patterson M, Keyse SM, Munsterberg A. Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite. Development. 2005;132(6):1305-1314.
Aoyama H, Mizutani-koseki S, Koseki H. Three developmental compartments involved in rib formation. Int J Dev Biol. 2005;49(2-3):325-333. https://doi.org/10.1387/ijdb.041932ha.
Kieny M, Mauger A, Sengel P. Early regionalization of somitic mesoderm as studied by the development of axial skeleton of the chick embryo. Dev Biol. 1972;28(1):142-161.
Jacob MC, Jacob HJ. Über die regionale Determination des paraxialen Mesoderms junger Hühnerembryonen. Verh Anat Ges. 1975;69:263-269.
Burke AC, Nelson CE, Morgan BA, Tabin C. Hox genes and the evolution of vertebrate axial morphology. Development. 1995;121(2):333-346.
Carapuco M, Novoa A, Bobola N, Mallo M. Hox genes specify vertebral types in the presomitic mesoderm. Genes Dev. 2005;19(18):2116-2121.
Wellik DM, Capecchi MR. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science. 2003;301(5631):363-367. https://doi.org/10.1126/science.1085672 [pii].
Vinagre T, Moncaut N, Carapuco M, Novoa A, Bom J, Mallo M. Evidence for a myotomal Hox/Myf cascade governing nonautonomous control of rib specification within global vertebral domains. Dev Cell. 2010;18(4):655-661.
McIntyre DC, Rakshit S, Yallowitz AR, et al. Hox patterning of the vertebrate rib cage. Development. 2007;134(16):2981-2989. https://doi.org/10.1242/dev.007567.
Chiang C, Litingtung Y, Lee E, et al. Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature. 1996;383(6599):407-413.
Dietrich S, Gruss P. Undulated phenotypes suggest a role of Pax-1 for the development of vertebral and extravertebral structures. Dev Biol. 1995;167(2):529-548. https://doi.org/10.1006/dbio.1995.1047.
Wallin J, Wilting J, Koseki H, Fritsch R, Christ B, Balling R. The role of Pax-1 in axial skeleton development. Development. 1994;120(5):1109-1121.
Teillet M, Watanabe Y, Jeffs P, Duprez D, Lapointe F, Le Douarin NM. Sonic hedgehog is required for survival of both myogenic and chondrogenic somitic lineages. Development. 1998;125(11):2019-2030.
Fogel JL, Lakeland DL, Mah IK, Mariani FV. A minimally sufficient model for rib proximal-distal patterning based on genetic analysis and agent-based simulations. Elife. 2017;6:1-25. https://doi.org/10.7554/eLife.29144.
Liem IK, Aoyama H. Body wall morphogenesis: limb-genesis interferes with body wall-genesis via its influence on the abaxial somite derivatives. Mech Dev. 2009;126(3-4):198-211. https://doi.org/10.1016/j.mod.2008.11.003.
Hirao A, Aoyama H. Somite development without influence of the surface ectoderm in the chick embryo: the compartments of a somite responsible for distal rib development. Dev Growth Differ. 2004;46(4):351-362. https://doi.org/10.1111/j.1440-169x.2004.00752.x.
Henderson DJ, Conway SJ, Copp AJ. Rib truncations and fusions in the Sp2H mouse reveal a role for Pax3 in specification of the ventro-lateral and posterior parts of the somite. Dev Biol. 1999;209(1):143-158.
Dickman ED, Rogers R, Conway SJ. Abnormal skeletogenesis occurs coincident with increased apoptosis in the splotch (Sp2H) mutant: putative roles for Pax3 and PDGFRalpha in rib patterning. Anatom Record. 1999;255(3):353-361.
Braun T, Rudnicki MA, Arnold HH, Jaenisch R. Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell. 1992;71(3):369-382.
Stolte D, Huang R, Christ B. Spatial and temporal pattern of Fgf-8 expression during chicken development. Anat Embryol (Berl). 2002;205(1):1-6.
Huang R, Stolte D, Kurz H, et al. Ventral axial organs regulate expression of myotomal Fgf-8 that influences rib development. Dev Biol. 2003;255(1):30-47.
Stark KL, McMahon JA, McMahon AP. FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development. 1991;113(2):641-651.
Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors. Cell. 2003;113(2):235-248.
Asou Y, Nifuji A, Tsuji K, et al. Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage. J Orthop Res. 2002;20(4):827-833. https://doi.org/10.1016/S0736-0266(01)00169-3.
Brent AE, Tabin CJ. FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development. 2004;131(16):3885-3896. https://doi.org/10.1242/dev.01275 dev.01275 [pii].
Murchison ND, Price BA, Conner DA, et al. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development. 2007;134(14):2697-2708. https://doi.org/10.1242/dev.001933.
Soriano P. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development. 1997;124(14):2691-2700.
Tallquist MD, Weismann KE, Hellstrom M, Soriano P. Early myotome specification regulates PDGFA expression and axial skeleton development. Development. 2000;127(23):5059-5070.
Laclef C, Hamard G, Demignon J, Souil E, Houbron C, Maire P. Altered myogenesis in Six1-deficient mice. Development. 2003;130(10):2239-2252. https://doi.org/10.1242/dev.00440.s.
Grifone R, Demignon J, Houbron C, et al. Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo. Development. 2005;132(9):2235-2249. https://doi.org/10.1242/dev.01773.
Geetha-Loganathan P, Nimmagadda S, Huang R, Christ B, Scaal M. Regulation of ectodermal Wnt6 expression by the neural tube is transduced by dermomyotomal Wnt11: a mechanism of dermomyotomal lip sustainment. Development. 2006;133(15):2897-2904.
Knopfli W. Beiträge zur Morphologie und Entwicklungsgeschichte des Brustschulterskeletts bei den Vögeln. Jena Z Naturw. 1919;55:577-720.
Nagashima H, Kuraku S, Uchida K, Kawashima-Ohya Y, Narita Y, Kuratani S. Body plan of turtles: an anatomical, developmental and evolutionary perspective. Anat Sci Int. 2012;87(1):1-13. https://doi.org/10.1007/s12565-011-0121-y.
Burke AC. Development of the turtle carapace: implications for the evolution of a novel bauplan. J Morphol. 1989;199(3):363-378. https://doi.org/10.1002/jmor.1051990310.
Cebra-Thomas J, Tan F, Sistla S, et al. How the turtle forms its shell: a paracrine hypothesis of carapace formation. J Exp Zool B Mol Dev Evol. 2005;304(6):558-569. https://doi.org/10.1002/jez.b.21059.
Pascual-Anaya J, Hirasawa T, Sato I, Kuraku S, Kuratani S. Comparative analysis of pleurodiran and cryptodiran turtle embryos depicts the molecular ground pattern of the turtle carapacial ridge. Int J Dev Biol. 2014;58(10-12):743-750. https://doi.org/10.1387/ijdb.140296jp.
Nagashima H, Sugahara F, Takechi M, et al. Evolution of the turtle body plan by the folding and creation of new muscle connections. Science. 2009;325(5937):193-196. https://doi.org/10.1126/science.1173826.
Hirasawa T, Nagashima H, Kuratani S. The endoskeletal origin of the turtle carapace. Nat Commun. 2013;4:2107. https://doi.org/10.1038/ncomms3107.
Moustakas-Verho JE, Cebra-Thomas J, Gilbert SF. Patterning of the turtle shell. Curr Opin Genet Dev. 2017;45:124-131. https://doi.org/10.1016/j.gde.2017.03.016.
Rice R, Riccio P, Gilbert SF, Cebra-Thomas J. Emerging from the rib: resolving the turtle controversies. J Exp Zool B Mol Dev Evol. 2015;324(3):208-220. https://doi.org/10.1002/jez.b.22600.
Woltering JM. From lizard to snake; behind the evolution of an extreme body plan. Curr Genomics. 2012;13(4):289-299. https://doi.org/10.2174/138920212800793302.
Gomez C, Ozbudak EM, Wunderlich J, Baumann D, Lewis J, Pourquie O. Control of segment number in vertebrate embryos. Nature. 2008;454(7202):335-339.
Cohn MJ, Tickle C. Developmental basis of limblessness and axial patterning in snakes. Nature. 1999;399(6735):474-479. https://doi.org/10.1038/20944.
Woltering JM, Vonk FJ, Muller H, et al. Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. Dev Biol. 2009;332(1):82-89. https://doi.org/10.1016/j.ydbio.2009.04.031.
Di-Poi N, Montoya-Burgos JI, Miller H, Pourquie O, Milinkovitch MC, Duboule D. Changes in Hox genes’ structure and function during the evolution of the squamate body plan. Nature. 2010;464(7285):99-103. https://doi.org/10.1038/nature08789.
Guerreiro I, Nunes A, Woltering JM, et al. Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine. Proc Natl Acad Sci U S A. 2013;110(26):10682-10686. https://doi.org/10.1073/pnas.1300592110.
Rathke H. Zur Entwickelungsgeschichte der Tiere, eine Bemerkung. (Entwickelung des Sternums bei Vögeln und Säugetieren). Arch Anat Physiol wiss Med (Müllers Archiv). 1838;361-372.
Kölliker A. Entwicklungsgeschichte des Menschen und der höheren Thiere. Leipzig: Engelmann; 1879.
Bruch K. Beiträge zur Entwickelungsgeschichte des Knochensystems. Neue Denkschr d Allg schweiz Gesf d ges Naturwissensch. 1852;12:1-176.
Fell HB. On the origin and developmental mechanics of the avian sternum. Philos Trans R Soc Lond [Biol]. 1939;229:407-464.
Bickley SR, Logan MP. Regulatory modulation of the T-box gene Tbx5 links development, evolution, and adaptation of the sternum. Proc Natl Acad Sci U S A. 2014;111(50):17917-17922. https://doi.org/10.1073/pnas.1409913111.
Estrada KD, Retting KN, Chin AM, Lyons KM. Smad6 is essential to limit BMP signaling during cartilage development. J Bone Miner Res. 2011;26(10):2498-2510. https://doi.org/10.1002/jbmr.443.
Storm EE, Kingsley DM. Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development. 1996;122(12):3969-3979.
Alkhatib B, Liu C, Serra R. Tgfbr2 is required in Acan-expressing cells for maintenance of the intervertebral and sternocostal joints. JOR Spine. 2018;1(2):1. https://doi.org/10.1002/jsp2.1025.
Nagashima H, Shibata M, Taniguchi M, Ueno S, Kamezaki N, Sato N. Comparative study of the shell development of hard- and soft-shelled turtles. J Anat. 2014;225(1):60-70. https://doi.org/10.1111/joa.12189.
Gros J, Scaal M, Marcelle C. A two-step mechanism for myotome formation in chick. Dev Cell. 2004;6(6):875-882.
Gros J, Manceau M, Thome V, Marcelle C. A common somitic origin for embryonic muscle progenitors and satellite cells. Nature. 2005;435(7044):954-958.
Valasek P, Evans DJ, Maina F, Grim M, Patel K. A dual fate of the hindlimb muscle mass: cloacal/perineal musculature develops from leg muscle cells. Development. 2005;132(3):447-458.
Valasek P, Theis S, DeLaurier A, et al. Cellular and molecular investigations into the development of the pectoral girdle. Dev Biol. 2011;357(1):108-116.
Scaal M, Marcelle C. Chick muscle development. Int J Dev Biol. 2018;62(1-2-3):127-136. https://doi.org/10.1387/ijdb.170312cm.
His W. Untersuchungen über die erste Anlage des Wirbelthierleibes. Die erste Entwicklung des Hühnchens im Ei. Leipzig: Vogel; 1868.
Fischel A. Zur Entwicklung der ventralen Rumpf- und Extremitätenmuskulatur der Vögel und Säugetiere. Morphol Jb. 1895;23:544-561.
Engert H. Die Entwickelung der ventralen Rumpfmuskulatur bei Vögeln. Morphol Jb. 1900;29:169-185.
Chevallier A, Kieny M, Mauger A. Limb-somite relationship: origin of the limb musculature. J Embryol Exp Morphol. 1977;41:245-258.
Christ B, Jacob HJ, Jacob M. Über den Ursprung der Flügelmuskulatur. Experientia. 1974;30(12):1446-1449.
Christ B, Jacob HJ, Jacob M. Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol (Berl). 1977;150(2):171-186.
Christ B, Jacob HJ. Jacob M. an experimental study on the relative distribution of the somitic and somatic plate mesoderm to the abdominal wall of avian embryos. Experientia. 1978;34:241-242.
Cinnamon Y, Kahane N, Kalcheim C. Characterization of the early development of specific hypaxial muscles from the ventrolateral myotome. Development. 1999;126(19):4305-4315.
Krück S, Scaal M. Divergent regulation of Wnt-mediated development of the dorsomedial and ventrolateral dermomyotomal lips. Histochem Cell Biol. 2012;138(3):503-514. https://doi.org/10.1007/s00418-012-0971-y.
Christ B, Ordahl CP. Early stages of chick somite development. Anat Embryol (Berl). 1995;191(5):381-396.
Ordahl CP, Le Douarin NM. Two myogenic lineages within the developing somite. Development. 1992;114(2):339-353.
Mekonen HK, Hikspoors JP, Mommen G, Kohler SE, Lamers WH. Development of the ventral body wall in the human embryo. J Anat. 2015;227(5):673-685. https://doi.org/10.1111/joa.12380.
Pu Q, Abduelmula A, Masyuk M, et al. The dermomyotome ventrolateral lip is essential for the hypaxial myotome formation. BMC Dev Biol. 2013;13:37.
Chevallier A. Role of the somitic mesoderm in the development of the thorax in bird embryos. II. Origin of thoracic and appendicular musculature. J Embryol Exp Morphol. 1979;49:73-88.
Christ B, Jacob M, Jacob HJ. On the origin and development of the ventrolateral abdominal muscles in the avian embryo. An experimental and ultrastructural study. Anat Embryol (Berl). 1983;166(1):87-101.
Aoyama H, Asamoto K. The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: experimental confirmation of the resegmentation theory using chick-quail chimeras. Mech Dev. 2000;99(1-2):71-82.
Ward L, Evans SE, Stern CD. A resegmentation-shift model for vertebral patterning. J Anat. 2017;230(2):290-296. https://doi.org/10.1111/joa.12540.
Evans DJ, Valasek P, Schmidt C, Patel K. Skeletal muscle translocation in vertebrates. Anat Embryol (Berl). 2006;211(Suppl 1):43-50. https://doi.org/10.1007/s00429-006-0121-1.
Christ B, Jacob HJ, Jacob M. Über die Entwicklung der Bauchmuskulatur. I. Experimentelle Untersuchungen und Vogelembryonen. Verh Anat Ges. 1981;75:521-523.
Jacob M, Christ B, Jacob HJ. Über die Entwicklung der Bauchwandmuskulatur. II. Ultrastrukturelle Untersuchungen an Vogelembryonen. Verh Anat Ges. 1981;75:525-527.
Theiler M. Über die Differenzierung der Rumpf-Myotome beim Menschen und die Herkunft der Bauchwandmuskeln. Acta Anat (Basel). 1957;30:842-864.
Parry W. The embryonic origin of the abdominal (ventrolateral) musculature in the albino rat. Am J Anat. 1968;122(3):491-511. https://doi.org/10.1002/aja.1001220304.
Lyson TR, Schachner ER, Botha-Brink J, et al. Origin of the unique ventilatory apparatus of turtles. Nat Commun. 2014;5:5211. https://doi.org/10.1038/ncomms6211.
Gans C, Hughes GM. The mechanism of lung ventilation in the tortoise Testudo graeca Linne. J Exp Biol. 1967;47(1):1-20.
Wotton KR, Schubert FR, Dietrich S. Hypaxial muscle: controversial classification and controversial data? Results Probl Cell Differ. 2015;56:25-48. https://doi.org/10.1007/978-3-662-44608-9_2.
Pourquie O, Coltey M, Breant C, Le Douarin NM. Control of somite patterning by signals from the lateral plate. Proc Natl Acad Sci U S A. 1995;92(8):3219-3223.
Pourquie O, Fan CM, Coltey M, et al. Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell. 1996;84(3):461-471.
Cheng L, Alvares LE, Ahmed MU, El-Hanfy AS, Dietrich S. The epaxial-hypaxial subdivision of the avian somite. Dev Biol. 2004;274(2):348-369. https://doi.org/10.1016/j.ydbio.2004.07.020.
Martin BL, Peyrot SM, Harland RM. Hedgehog signaling regulates the amount of hypaxial muscle development during Xenopus myogenesis. Dev Biol. 2007;304(2):722-734. https://doi.org/10.1016/j.ydbio.2007.01.022.
Ahmed MU, Cheng L, Dietrich S. Establishment of the epaxial-hypaxial boundary in the avian myotome. Dev Dyn. 2006;235(7):1884-1894.
Grifone R, Demignon J, Giordani J, et al. Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev Biol. 2007;302(2):602-616. https://doi.org/10.1016/j.ydbio.2006.08.059.
Tremblay P, Dietrich S, Mericskay M, Schubert FR, Li Z, Paulin D. A crucial role for Pax3 in the development of the hypaxial musculature and the long-range migration of muscle precursors. Dev Biol. 1998;203(1):49-61.
Eng D, Ma HY, Xu J, Shih HP, Gross MK, Kioussi C. Loss of abdominal muscle in Pitx2 mutants associated with altered axial specification of lateral plate mesoderm. PLoS One. 2012;7(7):e42228. https://doi.org/10.1371/journal.pone.0042228.
Zhang L, Li H, Yu J, et al. Ectodermal Wnt signaling regulates abdominal myogenesis during ventral body wall development. Dev Biol. 2014;387(1):64-72.
Geduspan JS, Solursh M. A growth-promoting influence from the mesonephros during limb outgrowth. Dev Biol. 1992;151(1):242-250.
Wilson-Rawls J, Hurt CR, Parsons SM, Rawls A. Differential regulation of epaxial and hypaxial muscle development by paraxis. Development. 1999;126(23):5217-5229.

Auteurs

Martin Scaal (M)

Faculty of Medicine, Institute of Anatomy II, University of Cologne, Cologne, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH