Identification of circular RNAs in porcine sperm and evaluation of their relation to sperm motility.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
14 05 2020
14 05 2020
Historique:
received:
08
01
2020
accepted:
13
04
2020
entrez:
16
5
2020
pubmed:
16
5
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Circular RNAs (circRNAs) are emerging as a novel class of noncoding RNAs which potential role as gene regulators is quickly gaining interest. circRNAs have been studied in different tissues and cell types across several animal species. However, a thorough characterization of the circRNAome in ejaculated sperm remains unexplored. In this study, we profiled the sperm circRNA catalogue using 40 porcine ejaculates. A complex population of 1,598 circRNAs was shared in at least 30 of the 40 samples. Generally speaking, the predicted circRNAs presented low abundances and were tissue-specific. Around 80% of the circRNAs identified in the boar sperm were reported as novel. Results from abundance correlation between circRNAs and miRNAs together with the prediction of microRNA (miRNA) target sites in circRNAs suggested that circRNAs may act as miRNA sponges. Moreover, we found significant correlations between the abundance of 148 exonic circRNAs and sperm motility parameters. Two of these correlations, involving ssc_circ_1458 and ssc_circ_1321, were confirmed by RT-qPCR using 36 additional samples with extreme and opposite sperm motility values. Our study provides a thorough characterization of circRNAs in sperm and suggests that circRNAs hold potential as noninvasive biomarkers for sperm quality and male fertility.
Identifiants
pubmed: 32409652
doi: 10.1038/s41598-020-64711-z
pii: 10.1038/s41598-020-64711-z
pmc: PMC7224279
doi:
Substances chimiques
Biomarkers
0
MicroRNAs
0
RNA, Circular
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7985Références
Swindle, M. M., Makin, A., Herron, A. J., Clubb, F. J. & Frazier, K. S. Swine as Models in Biomedical Research and Toxicology Testing. Veterinary Pathol. 49, 344–356 (2012).
doi: 10.1177/0300985811402846
Hirsh, A. Male subfertility. BMJ 327, 669–672 (2003).
pubmed: 14500443
pmcid: 196399
doi: 10.1136/bmj.327.7416.669
Bernabo, N. et al. Extremely low frequency electromagnetic field exposure affects fertilization outcome in swine animal model. Theriogenology 73, 1293–1305 (2010).
pubmed: 20176397
doi: 10.1016/j.theriogenology.2009.12.010
pmcid: 20176397
Park, K. E. et al. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS
pubmed: 28071690
pmcid: 5223215
doi: 10.1038/srep40176
Farrell, P. B., Presicce, G. A., Brockett, C. C. & Foote, R. H. Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Theriogenology 49, 871–879 (1998).
pubmed: 10732095
doi: 10.1016/S0093-691X(98)00036-3
pmcid: 10732095
Love, C. C. Relationship between sperm motility, morphology and the fertility of stallions. Theriogenology 76, 547–557 (2011).
pubmed: 21497893
doi: 10.1016/j.theriogenology.2011.03.007
pmcid: 21497893
Broekhuijse, M. L. W. J., Sostaric, E., Feitsma, H. & Gadella, B. M. Application of computer-assisted semen analysis to explain variations in pig fertility. J. Anim. Sci. 90, 779–789 (2012).
pubmed: 22064743
doi: 10.2527/jas.2011-4311
pmcid: 22064743
Aitken, R. J. Sperm function tests and fertility. Int. J. Androl. 29, 69–74 (2006).
pubmed: 16466526
doi: 10.1111/j.1365-2605.2005.00630.x
pmcid: 16466526
Gòdia, M., Swanson, G. & Krawetz, S. A. A history of why fathers’ RNA matters. Biol. Reprod. 99, 147–159 (2018).
pubmed: 29514212
doi: 10.1093/biolre/ioy007
pmcid: 29514212
Salas-Huetos, A. et al. The role of miRNAs in male human reproduction: a systematic review. Andrology 8, 7–26 (2020).
pubmed: 31578810
doi: 10.1111/andr.12714
pmcid: 31578810
Jeck, W. R. & Sharpless, N. E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 32, 453–461 (2014).
pubmed: 24811520
pmcid: 4121655
doi: 10.1038/nbt.2890
Kristensen, L. S. et al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691 (2019).
pubmed: 31395983
doi: 10.1038/s41576-019-0158-7
pmcid: 31395983
Liu, J., Liu, T., Wang, X. & He, A. Circles reshaping the RNA world: from waste to treasure. Mol. Cancer 16, 58 (2017).
pubmed: 28279183
pmcid: 5345220
doi: 10.1186/s12943-017-0630-y
Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).
pubmed: 23446348
doi: 10.1038/nature11928
pmcid: 23446348
Zhang, Z., Yang, T. & Xiao, J. Circular RNAs: Promising Biomarkers for Human Diseases. EBioMedicine 34, 267–274 (2018).
pubmed: 30078734
pmcid: 6116471
doi: 10.1016/j.ebiom.2018.07.036
Quan, G. B. & Li, J. L. Circular RNAs: biogenesis, expression and their potential roles in reproduction. J. Ovarian Res. 11, 9 (2018).
pubmed: 29343298
pmcid: 5773157
doi: 10.1186/s13048-018-0381-4
Dong, W.W., Li, H.M., Qing, X.R., Huang, D.H. & Li, H.G. Identification and characterization of human testis derived circular RNAs and their existence in seminal plasma. Scientific Reports 6, 39080 (2016).
Chioccarelli, T. et al. Expression Patterns of Circular RNAs in High Quality and Poor Quality Human Spermatozoa. Front. Endocrinol. 10, 435 (2019).
doi: 10.3389/fendo.2019.00435
Cheng, J. et al. Circular RNA expression profiling of human granulosa cells during maternal aging reveals novel transcripts associated with assisted reproductive technology outcomes. PLoS One 12, e0177888 (2017).
pubmed: 28644873
pmcid: 5482436
doi: 10.1371/journal.pone.0177888
Gòdia, M. et al. A RNA-Seq Analysis to Describe the Boar Sperm Transcriptome and Its Seasonal Changes. Front. Genet. 10, 299 (2019).
pubmed: 31040860
pmcid: 6476908
doi: 10.3389/fgene.2019.00299
Venø, M. T. et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 16, 245 (2015).
pubmed: 26541409
pmcid: 4635978
doi: 10.1186/s13059-015-0801-3
Glazar, P., Papavasileiou, P. & Rajewsky, N. circBase: a database for circular RNAs. RNA 20, 1666–1670 (2014).
pubmed: 25234927
pmcid: 4201819
doi: 10.1261/rna.043687.113
Liang, G. M., Yang, Y. L., Niu, G. L., Tang, Z. L. & Li, K. Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. DNA Res. 24, 523–535 (2017).
pubmed: 28575165
pmcid: 5737845
doi: 10.1093/dnares/dsx022
Zhou, T. et al. Rat BodyMap transcriptomes reveal unique circular RNA features across tissue types and developmental stages. RNA 24, 1443–1456 (2018).
pubmed: 30093490
pmcid: 6191709
doi: 10.1261/rna.067132.118
Gruner, H., Cortes-Lopez, M., Cooper, D.A., Bauer, M. & Miura, P. CircRNA accumulation in the aging mouse brain. Scientific Reports 6, 38907 (2016).
Enright, A. J. et al. MicroRNA targets in Drosophila. Genome Biol. 5, R1 (2003).
pubmed: 14709173
pmcid: 395733
doi: 10.1186/gb-2003-5-1-r1
Ota, K. et al. Expression of a2 Vacuolar ATPase in Spermatozoa is Associated with Semen Quality and Chemokine-Cytokine Profiles in Infertile Men. PLoS One 8, e70470 (2013).
pubmed: 23936208
pmcid: 3728098
doi: 10.1371/journal.pone.0070470
Asghari, A., Marashi, S. A. & Ansari-Pour, N. A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia. Syst. Biol. Reprod. Med. 63, 100–112 (2017).
pubmed: 28085499
doi: 10.1080/19396368.2016.1263367
pmcid: 28085499
Yanagiya, A., Delbes, G., Svitkin, Y. V., Robaire, B. & Sonenberg, N. The poly(A)-binding protein partner Paip2a controls translation during late spermiogenesis in mice. J. Clin. Invest. 120, 3389–3400 (2010).
pubmed: 20739757
pmcid: 2929737
doi: 10.1172/JCI43350
Schwab, K. R., Smith, G. D. & Dressler, G. R. Arrested spermatogenesis and evidence for DNA damage in PTIP mutant testes. Dev. Biol. 373, 64–71 (2013).
pubmed: 23063797
doi: 10.1016/j.ydbio.2012.10.006
pmcid: 23063797
Rosok, O., Pedeutour, F., Ree, A. H. & Aasheim, H. C. Identification and characterization of TESK2, a novel member of the LIMK/TESK family of protein kinases, predominantly expressed in testis. Genomics 61, 44–54 (1999).
pubmed: 10512679
doi: 10.1006/geno.1999.5922
pmcid: 10512679
Luo, J. P., McGinnis, L. K., Carlton, C., Beggs, H. E. & Kinsey, W. H. PTK2b function during fertilization of the mouse oocyte. Biochemical Biophysical Res. Commun. 450, 1212–1217 (2014).
doi: 10.1016/j.bbrc.2014.03.083
Mi, Y. J., Shi, Z. & Li, J. Spata19 Is Critical for Sperm Mitochondrial Function and Male Fertility. Mol. Reprod. Dev. 82, 907–913 (2015).
pubmed: 26265198
doi: 10.1002/mrd.22536
pmcid: 26265198
Bachmayr-Heyda, A. et al. Correlation of circular RNA abundance with proliferation - exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci. Rep. 5, 8057 (2015).
pubmed: 25624062
pmcid: 4306919
doi: 10.1038/srep08057
Jumeau, F. et al. Defining the human sperm microtubulome: an integrated genomics approach. Biol. Reprod. 96, 93–106 (2017).
pubmed: 28395323
pmcid: 28395323
Abu-Halima, M. et al. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil. Steril. 99, 1249–1255.e16 (2013).
Muñoz, X., Mata, A., Bassas, L. & Larriba, S. Altered miRNA Signature of Developing Germ-cells in Infertile Patients Relates to the Severity of Spermatogenic Failure and Persists in Spermatozoa. Sci. Rep. 5, 17991 (2015).
pubmed: 26648257
pmcid: 4673613
doi: 10.1038/srep17991
Salas-Huetos, A. et al. Spermatozoa from patients with seminal alterations exhibit a differential micro-ribonucleic acid profile. Fertil. Steril. 104, 591–601 (2015).
pubmed: 26143365
doi: 10.1016/j.fertnstert.2015.06.015
pmcid: 26143365
Wallock, L., Jacob, R., Woodall, A. & Ames, B. Nutritional status and positive relation of plasma folate to fertility indices in nonsmoking men. FASEB J. 11, 1068–1068 (1997).
Li, F. Q. et al. BAR Domain-Containing FAM92 Proteins Interact with Chibby1 To Facilitate Ciliogenesis. Mol. Cell Biol. 36, 2668–2680 (2016).
pubmed: 27528616
pmcid: 5064215
doi: 10.1128/MCB.00160-16
Suchocki, T. & Szyda, J. Genome-wide association study for semen production traits in Holstein-Friesian bulls. J. Dairy. Sci. 98, 5774–5780 (2015).
pubmed: 26051317
doi: 10.3168/jds.2014-8951
pmcid: 26051317
Ma, J. D. et al. Testosterone-Dependent miR-26a-5p and let-7g-5p Act as Signaling Mediators to Regulate Sperm Apoptosis via Targeting PTEN and PMAIP1. Int. J. Mol. Sci. 19, 1233 (2018).
pmcid: 5979296
doi: 10.3390/ijms19041233
Bao, X. et al. ACTL6a enforces the epidermal progenitor state by suppressing SWI/SNF-dependent induction of KLF4. Cell Stem Cell 12, 193–203 (2013).
pubmed: 23395444
pmcid: 3661004
doi: 10.1016/j.stem.2012.12.014
Alsheimer, M., Drewes, T., Schutz, W. & Benavente, R. The cancer/testis antigen CAGE-1 is a component of the acrosome of spermatids and spermatozoa. Eur. J. Cell Biol. 84, 445–452 (2005).
pubmed: 15819420
doi: 10.1016/j.ejcb.2004.11.003
pmcid: 15819420
Zhou, R. et al. Mitochondria-related miR-151a-5p reduces cellular ATP production by targeting CYTB in asthenozoospermia. Sci. Rep. 5, 17743 (2015).
pubmed: 26626315
pmcid: 4667214
doi: 10.1038/srep17743
Marin-Briggiler, C. I. et al. Evidence of the presence of calcium/calmodulin-dependent protein kinase IV in human sperm and its involvement in motility regulation. J. Cell Sci. 118, 2013–2022 (2005).
pubmed: 15840651
doi: 10.1242/jcs.02326
pmcid: 15840651
Liu, Y. et al. LRGUK-1 Is Required for Basal Body and Manchette Function during Spermatogenesis and Male Fertility. PLoS Genet. 11, e1005090 (2015).
pubmed: 25781171
pmcid: 4363142
doi: 10.1371/journal.pgen.1005090
Ehrmann, I. et al. The tissue-specific RNA binding protein T-STAR controls regional splicing patterns of neurexin pre-mRNAs in the brain. PLoS Genet. 9, e1003474 (2013).
pubmed: 23637638
pmcid: 3636136
doi: 10.1371/journal.pgen.1003474
Capra, E. et al. Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High- and Low-motile sperm populations. BMC Genomics 18, 14 (2017).
Ferlin, A. et al. Male infertility: role of genetic background. Reprod. Biomed. Online 14, 734–745 (2007).
pubmed: 17579990
doi: 10.1016/S1472-6483(10)60677-3
pmcid: 17579990
R Developmental Core Team. R: A language and environment for statistical computing. (2010).
Gòdia, M. et al. A technical assessment of the porcine ejaculated spermatozoa for a sperm-specific RNA-seq analysis. Syst. Biol. Reprod. Med. 64, 291–303 (2018).
pubmed: 29696996
doi: 10.1080/19396368.2018.1464610
pmcid: 29696996
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Kuhn, R. M.,Haussler, D. & Kent, W. J. The UCSC genome browser and associated tools Briefings in Bioinfomatics 14, 144–161 (2013).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).
doi: 10.14806/ej.17.1.200
Rueda, A. et al. sRNAtoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res. 43, W467–473 (2015).
pubmed: 26019179
pmcid: 4489306
doi: 10.1093/nar/gkv555
Kozomara, A. G.-J.S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).
pubmed: 21037258
doi: 10.1093/nar/gkq1027
pmcid: 21037258
Reverter, A. & Chan, E. K. Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 24, 2491–2497 (2008).
pubmed: 18784117
doi: 10.1093/bioinformatics/btn482
pmcid: 18784117
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658
pmcid: 403769
doi: 10.1101/gr.1239303
Mi, H. et al. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 38, D204–210 (2010).
pubmed: 20015972
doi: 10.1093/nar/gkp1019
pmcid: 20015972
Barrett, S. P. & Salzman, J. Circular RNAs: analysis, expression and potential functions. Development 143, 1838–1847 (2016).
pubmed: 27246710
pmcid: 4920157
doi: 10.1242/dev.128074