Genetic and environmental influences on human height from infancy through adulthood at different levels of parental education.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
14 05 2020
14 05 2020
Historique:
received:
07
10
2019
accepted:
21
04
2020
entrez:
16
5
2020
pubmed:
16
5
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Genetic factors explain a major proportion of human height variation, but differences in mean stature have also been found between socio-economic categories suggesting a possible effect of environment. By utilizing a classical twin design which allows decomposing the variation of height into genetic and environmental components, we tested the hypothesis that environmental variation in height is greater in offspring of lower educated parents. Twin data from 29 cohorts including 65,978 complete twin pairs with information on height at ages 1 to 69 years and on parental education were pooled allowing the analyses at different ages and in three geographic-cultural regions (Europe, North America and Australia, and East Asia). Parental education mostly showed a positive association with offspring height, with significant associations in mid-childhood and from adolescence onwards. In variance decomposition modeling, the genetic and environmental variance components of height did not show a consistent relation to parental education. A random-effects meta-regression analysis of the aggregate-level data showed a trend towards greater shared environmental variation of height in low parental education families. In conclusion, in our very large dataset from twin cohorts around the globe, these results provide only weak evidence for the study hypothesis.
Identifiants
pubmed: 32409744
doi: 10.1038/s41598-020-64883-8
pii: 10.1038/s41598-020-64883-8
pmc: PMC7224277
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
7974Subventions
Organisme : NIA NIH HHS
ID : R01 AG022982
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG013662
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG039572
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD010333
Pays : United States
Organisme : NIAAA NIH HHS
ID : K05 AA000145
Pays : United States
Organisme : NIAAA NIH HHS
ID : R01 AA012502
Pays : United States
Organisme : NIMH NIH HHS
ID : R03 MH063851
Pays : United States
Organisme : NIAAA NIH HHS
ID : R21 AA023322
Pays : United States
Organisme : NIMH NIH HHS
ID : R21 MH070542
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH081813
Pays : United States
Organisme : NIDA NIH HHS
ID : T32 DA017637
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH092377
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG018386
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES015150
Pays : United States
Organisme : NIA NIH HHS
ID : T32 AG052371
Pays : United States
Organisme : NICHD NIH HHS
ID : R21 HD081437
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD066040
Pays : United States
Organisme : NIAAA NIH HHS
ID : R01 AA009203
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG018384
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD068435
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH062375
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH058354
Pays : United States
Organisme : NIDA NIH HHS
ID : P60 DA011015
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG050595
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG022381
Pays : United States
Organisme : NIAAA NIH HHS
ID : R37 AA012502
Pays : United States
Références
Galton, F. Regression towards mediocrity in heriditary stature. Journal of the Anthropological Institute. 15, 246–262 (1886).
Pearson, K. & Lee, A. On the laws on inheritance in man. Biometrika. 2, 356–462 (1903).
doi: 10.1093/biomet/2.3.356
Fisher, R. A. The correlation between relatives on the supposition of mendelian inheritance. Transactions of the Royal Society of Edinburgh. 52, 399–433 (1918).
doi: 10.1017/S0080456800012163
Visscher, P. M., McEvoy, B. & Yang, J. From galton to GWAS: Quantitative genetics of human height. Genet Res (Camb). 92, 371–379 (2010).
doi: 10.1017/S0016672310000571
Perola, M. et al. Combined genome scans for body stature in 6,602 european twins: Evidence for common caucasian loci. PLoS Genet. 3, e97 (2007).
doi: 10.1371/journal.pgen.0030097
Cho, Y. S. et al. A large-scale genome-wide association study of asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 41, 527–534 (2009).
doi: 10.1038/ng.357
Hao, Y. et al. Genome-wide association study in han chinese identifies three novel loci for human height. Hum Genet. 132, 681–689 (2013).
doi: 10.1007/s00439-013-1280-9
Allen, H. L. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 467, 832–838 (2010).
doi: 10.1038/nature09410
N’Diaye, A. et al. Identification, replication, and fine-mapping of loci associated with adult height in individuals of african ancestry. PLoS Genet. 7, e1002298 (2011).
doi: 10.1371/journal.pgen.1002298
Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 46, 1173–1186 (2014).
doi: 10.1038/ng.3097
Eveleth, P. B. & Tanner, J. M. “Worldwide variation in human growth” (Cambridge University Press, 1990)
Bogin, B. “The growth of humanity” (Wiley-Liss, 2001)
Steckel, R. H. Heights and human welfare: Recent developments and new directions. Explorations in Economic History. 46, 1–23 (2009).
doi: 10.1016/j.eeh.2008.12.001
Bozzoli, C., Deaton, A. & Quintana-Domeque, C. Adult height and childhood disease. Demography. 46, 647–669 (2009).
doi: 10.1353/dem.0.0079
Silventoinen, K. Determinants of variation in adult body height. J Biosoc Sci. 35, 263–285 (2003).
doi: 10.1017/S0021932003002633
McCrory, C. et al. Socioeconomic differences in children’s growth trajectories from infancy to early adulthood: Evidence from four european countries. J Epidemiol Community Health. 71, 981–989 (2017).
doi: 10.1136/jech-2016-208556
Lakshman, R. et al. Higher maternal education is associated with favourable growth of young children in different countries. J Epidemiol Community Health. 67, 595–602 (2013).
doi: 10.1136/jech-2012-202021
Jelenkovic, A. et al. Genetic and environmental influences on adult human height across birth cohorts from 1886 to 1994. Elife. 5, https://doi.org/10.7554/eLife.20320 (2016).
Jelenkovic, A. et al. Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts. Sci Rep. 6, 28496 (2016).
doi: 10.1038/srep28496
Boomsma, D., Busjahn, A. & Peltonen, L. Classical twin studies and beyond. Nat Rev Genet. 3, 872–882 (2002).
doi: 10.1038/nrg932
Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era–concepts and misconceptions. Nat Rev Genet. 9, 255–266 (2008).
doi: 10.1038/nrg2322
Bronfenbrenner, U. & Ceci, S. J. Nature-nurture reconceptualized in developmental perspective: A bioecological model. Psychol Rev. 101, 568–586 (1994).
doi: 10.1037/0033-295X.101.4.568
Scarr, S. & McCartney, K. How people make their own environments: A theory of genotype greater than environment effects. Child Dev. 54, 424–435 (1983).
pubmed: 6683622
Boomsma, D. I. & Martin, N. G., Gene-environment interactions in Biological Psychiatry, D’Haenen, H, den Boer, JA & P, Wilner Eds. pp. 181–187 (John Wiley & Sons, 2002).
Silventoinen, K. et al. Education in twins and their parents across birth cohorts over 100 years: An individual-level pooled analysis of 42-twin cohorts. Twin Res Hum Genet. 20, 395–405 (2017).
doi: 10.1017/thg.2017.49
Galobardes, B. et al. Social inequalities in height: Persisting differences today depend upon height of the parents. PLoS One. 7, e29118 (2012).
doi: 10.1371/journal.pone.0029118
Matijasevich, A. et al. Maternal education inequalities in height growth rates in early childhood: 2004 pelotas birth cohort study. Paediatr Perinat Epidemiol. 26, 236–249 (2012).
doi: 10.1111/j.1365-3016.2011.01251.x
Kwok, M. K., Leung, G. M., Lam, T. H., Leung, S. S. & Schooling, C. M. Grandparental education, parental education and child height: Evidence from hong kong’s “children of 1997” birth cohort. Ann Epidemiol. 23, 475–484 (2013).
doi: 10.1016/j.annepidem.2013.05.016
Zheng, J. et al. LD hub: A centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 33, 272–279 (2017).
doi: 10.1093/bioinformatics/btw613
Abdellaoui, A. et al. Genetic correlates of social stratification in great britain. Nat Hum Behav. 3, 1332–1342 (2019).
doi: 10.1038/s41562-019-0757-5
Silventoinen, K. et al. The CODATwins project: The cohort description of COllaborative project of development of anthropometrical measures in twins to study macro-environmental variation in genetic and environmental effects on anthropometric traits. Twin Res Hum Genet. 18, 348–360 (2015).
doi: 10.1017/thg.2015.29
National Institute of Arthritis and Musculoskeletal and Skin Diseases, Handout on health: Osteoporosis. 2016, April,(2014).
Mallick, S. et al. The simons genome diversity project: 300 genomes from 142 diverse populations. Nature. 538, 201–206 (2016).
doi: 10.1038/nature18964
Jelenkovic, A. et al. Zygosity differences in height and body mass index of twins from infancy to old age: A study of the CODATwins project. Twin Res Hum Genet. 18, 557–570 (2015).
doi: 10.1017/thg.2015.57
Williams, R. L. A note on robust variance estimation for cluster-correlated data. Biometrics. 56, 645–646 (2000).
doi: 10.1111/j.0006-341X.2000.00645.x
Posthuma, D. et al. Theory and practice in quantitative genetics. Twin Res. 6, 361–376 (2003).
doi: 10.1375/136905203770326367