Marker enzyme activities in hindleg from creatine-deficient AGAT and GAMT KO mice - differences between models, muscles, and sexes.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
14 05 2020
14 05 2020
Historique:
received:
19
02
2020
accepted:
20
04
2020
entrez:
16
5
2020
pubmed:
16
5
2020
medline:
1
12
2020
Statut:
epublish
Résumé
Creatine kinase (CK) functions as an energy buffer in muscles. Its substrate, creatine, is generated by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT). Creatine deficiency has more severe consequences for AGAT than GAMT KO mice. In the present study, to characterize their muscle phenotype further, we recorded the weight of tibialis anterior (TA), extensor digitorum longus (EDL), gastrocnemius (GAS), plantaris (PLA) and soleus (SOL) from creatine-deficient AGAT and GAMT, KO and WT mice. In GAS, PLA and SOL representing glycolytic, intermediate and oxidative muscle, respectively, we recorded the activities of pyruvate kinase (PK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome oxidase (CO). In AGAT KO compared to WT mice, muscle atrophy and differences in marker enzyme activities were more pronounced in glycolytic than oxidative muscle. In GAMT KO compared to WT, the atrophy was modest, differences in PK and LDH activities were minor, and CS and CO activities were slightly higher in all muscles. SOL from males had higher CS and CO activities compared to females. Our results add detail to the characterization of AGAT and GAMT KO skeletal muscle phenotypes and illustrate the importance of taking into account differences between muscles, and differences between sexes.
Identifiants
pubmed: 32409787
doi: 10.1038/s41598-020-64740-8
pii: 10.1038/s41598-020-64740-8
pmc: PMC7224371
doi:
Substances chimiques
Biomarkers
0
Guanidinoacetate N-Methyltransferase
EC 2.1.1.2
Amidinotransferases
EC 2.1.4.-
glycine amidinotransferase
EC 2.1.4.1
Creatine
MU72812GK0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7956Références
Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K. & Eppenberger, H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 281, 21–40 (1992).
doi: 10.1042/bj2810021
Watchko, J. F., Daood, M. J. & Labella, J. J. Creatine Kinase Activity in Rat Skeletal Muscle Relates to Myosin Phenotype during Development. Pediatr. Res. 40, 53–58 (1996).
doi: 10.1203/00006450-199607000-00010
Ventura-Clapier, R., Kuznetsov, A., Veksler, V., Boehm, E. & Anflous, K. Functional coupling of creatine kinases in muscles: species and tissue specificity. Mol. Cell Biochem. 184, 231–247 (1998).
doi: 10.1023/A:1006840508139
Schmidt, A. et al. Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Hum. Mol. Genet. 13, 905–921 (2004).
doi: 10.1093/hmg/ddh112
Choe, C. et al. Homoarginine Levels Are Regulated by l-Arginine:Glycine Amidinotransferase and Affect Stroke Outcome Results From Human and Murine Studies. Circulation 128, 1451–1461 (2013).
doi: 10.1161/CIRCULATIONAHA.112.000580
van Deursen, J. et al. Creatine kinase (CK) in skeletal muscle energy metabolism: a study of mouse mutants with graded reduction in muscle CK expression. Proc. Natl. Acad. Sci. USA 91, 9091–9095 (1994).
doi: 10.1073/pnas.91.19.9091
Steeghs, K. et al. Cytoarchitectural and metabolic adaptations in muscles with mitochondrial and cytosolic creatine kinase deficiencies. Mol. Cell Biochem. 184, 183–194 (1998).
doi: 10.1023/A:1006811717709
Veksler, V. I. et al. Muscle creatine kinase-deficient mice. II. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mitochondrial function. J. Biol. Chem. 270, 19921–19929 (1995).
doi: 10.1074/jbc.270.34.19921
Momken, I. et al. Impaired voluntary running capacity of creatine kinase-deficient mice. J. Physiol 565, 951–964 (2005).
doi: 10.1113/jphysiol.2005.086397
Nabuurs, C. I. et al. Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake. J. Physiol. 591, 571–592 (2013).
doi: 10.1113/jphysiol.2012.241760
Stockebrand, M. et al. A Mouse Model of Creatine Transporter Deficiency Reveals Impaired Motor Function and Muscle Energy Metabolism. Front. Physiol. 9, 773 (2018).
doi: 10.3389/fphys.2018.00773
Perna, M. K. et al. Creatine transporter deficiency leads to increased whole-body and cellular metabolism. Amino Acids 48, 2057–2065 (2016).
doi: 10.1007/s00726-016-2291-3
Steeghs, K. et al. Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89, 93–103 (1997).
doi: 10.1016/S0092-8674(00)80186-5
Ventura-Clapier, R. et al. Muscle creatine kinase-deficient mice. I. Alterations in myofibrillar function. J. Biol. Chem. 270, 19914–19920 (1995).
doi: 10.1074/jbc.270.34.19914
ter Veld, F., Nicolay, K. & Jeneson, J. A. L. Increased resistance to fatigue in creatine kinase deficient muscle is not due to improved contractile economy. Pflüg. Arch. - Eur. J. Physiol. 452, 342–348 (2006).
doi: 10.1007/s00424-005-0041-6
Oudman, I., Clark, J. F. & Brewster, L. M. The Effect of the Creatine Analogue Beta-guanidinopropionic Acid on Energy Metabolism: A Systematic Review. PLoS ONE 8 (2013).
Sasani, A. et al. Muscle phenotype of AGAT- and GAMT-deficient mice after simvastatin exposure. Amino Acids 52, 73–85 (2020).
doi: 10.1007/s00726-019-02812-4
Larsen, S. et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 590, 3349–3360 (2012).
doi: 10.1113/jphysiol.2012.230185
Choe, C. et al. l-arginine:glycine amidinotransferase deficiency protects from metabolic syndrome. Hum. Mol. Genet. 22, 110–123 (2013).
doi: 10.1093/hmg/dds407
Hennebry, A. et al. Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. Am. J. Physiol.-Cell Physiol. 296, C525–C534 (2009).
doi: 10.1152/ajpcell.00259.2007
Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).
doi: 10.1038/nrm.2017.95
Faller, K. M. E. et al. Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine. Cardiovasc. Res. 114, 417–430 (2018).
doi: 10.1093/cvr/cvx242
Stockebrand, M. et al. Transcriptomic and metabolic analyses reveal salvage pathways in creatine-deficient AGAT−/− mice. Amino Acids 48, 2025–2039 (2016).
doi: 10.1007/s00726-016-2202-7
Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).
doi: 10.1038/nature00904
Kan, H. E., Renema, W. K. J., Isbrandt, D. & Heerschap, A. Phosphorylated Guanidinoacetate Partly Compensates for the Lack of Phosphocreatine in Skeletal Muscle of Mice Lacking Guanidinoacetate Methyltransferase. J. Physiol. 560, 219–229 (2004).
doi: 10.1113/jphysiol.2004.067926
Boehm, E. A., Radda, G. K., Tomlin, H. & Clark, J. F. The utilisation of creatine and its analogues by cytosolic and mitochondrial creatine kinase. Biochim. Biophys. Acta 1274, 119–128 (1996).
doi: 10.1016/0005-2728(96)00018-7
Ponticos, M. et al. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J. 17, 1688–1699 (1998).
doi: 10.1093/emboj/17.6.1688
Taylor, E. B. et al. Evidence against regulation of AMP-activated protein kinase and LKB1/STRAD/MO25 activity by creatine phosphate. Am. J. Physiol.-Endocrinol. Metab. 290, E661–E669 (2006).
doi: 10.1152/ajpendo.00313.2005
Suter, M. et al. Dissecting the Role of 5′-AMP for Allosteric Stimulation, Activation, and Deactivation of AMP-activated Protein Kinase. J. Biol. Chem. 281, 32207–32216 (2006).
doi: 10.1074/jbc.M606357200
Zong, Y. et al. Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Res. 29, 460–473 (2019).
doi: 10.1038/s41422-019-0163-6
Ventura-Clapier, R. et al. Sex in basic research: concepts in the cardiovascular field. Cardiovasc. Res. 113, 711–724 (2017).
doi: 10.1093/cvr/cvx066
Clayton, J. A. & Collins, F. S. NIH to balance sex in cell and animal studies. Nature 509, 282–283 (2014).
doi: 10.1038/509282a
Haizlip, K. M., Harrison, B. C. & Leinwand, L. A. Sex-Based Differences in Skeletal Muscle Kinetics and Fiber-Type Composition. Physiology 30, 30–39 (2015).
doi: 10.1152/physiol.00024.2014
Oydanich, M. et al. Mechanisms of sex differences in exercise capacity. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 316, R832–R838 (2019).
doi: 10.1152/ajpregu.00394.2018
Timson, B. F., Bowlin, B. K., Dudenhoeffer, G. A. & George, J. B. Fiber number, area, and composition of mouse soleus muscle following enlargement. J. Appl. Physiol. 58, 619–624 (1985).
doi: 10.1152/jappl.1985.58.2.619
White, Z. et al. Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice. Skelet. Muscle 6, 45 (2016).
doi: 10.1186/s13395-016-0117-3
Houle-Leroy, P., Garland, T., Swallow, J. G. & Guderley, H. Effects of voluntary activity and genetic selection on muscle metabolic capacities in house mice Mus domesticus. J. Appl. Physiol. 89, 1608–1616 (2000).
doi: 10.1152/jappl.2000.89.4.1608
Watanabe, D. et al. Sex differences in mitochondrial Ca2+ handling in mouse fast-twitch skeletal muscle in vivo. J. Appl. Physiol., https://doi.org/10.1152/japplphysiol.00230.2019 (2020).
Branovets, J. et al. Unchanged mitochondrial organization and compartmentation of high-energy phosphates in creatine-deficient GAMT-/- mouse hearts. Am. J. Physiol. Heart Circ. Physiol. 305, H506–520 (2013).
doi: 10.1152/ajpheart.00919.2012
Christensen, M., Hartmund, T. & Gesser, H. Creatine kinase, energy-rich phosphates and energy metabolism in heart muscle of different vertebrates. J. Comp. Physiol. B. 164, 118–123 (1994).
doi: 10.1007/BF00301652
Bishop, M. J., Everse, J. & Kaplan, N. O. Identification of Lactate Dehydrogenase Isoenzymes by Rapid Kinetics. Proc. Natl. Acad. Sci. 69, 1761–1765 (1972).
doi: 10.1073/pnas.69.7.1761
Eyer, P. et al. Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal. Biochem. 312, 224–227 (2003).
doi: 10.1016/S0003-2697(02)00506-7
JASP Team. JASP (Version 0.11.1). (2019).
Lee, M. D. & Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course. (Cambridge University Press, 2014).