Diagnosis of Autism Spectrum Disorder Using Central-Moment Features From Low- and High-Order Dynamic Resting-State Functional Connectivity Networks.
autism spectrum disorder
central-moment features
conventional FC network
dynamic functional connectivity networks
resting-state functional MRI
Journal
Frontiers in neuroscience
ISSN: 1662-4548
Titre abrégé: Front Neurosci
Pays: Switzerland
ID NLM: 101478481
Informations de publication
Date de publication:
2020
2020
Historique:
received:
07
12
2019
accepted:
09
03
2020
entrez:
16
5
2020
pubmed:
16
5
2020
medline:
16
5
2020
Statut:
epublish
Résumé
The sliding-window-based dynamic functional connectivity networks (D-FCNs) derived from resting-state functional magnetic resonance imaging (rs-fMRI) are effective methods for diagnosing various neurological diseases, including autism spectrum disorder (ASD). However, traditional D-FCNs are low-order networks based on pairwise correlation between brain regions, thus overlooking high-level interactions across multiple regions of interest (ROIs). Moreover, D-FCNs suffer from the temporal mismatching issue, i.e., subnetworks in the same temporal window do not have temporal correspondence across different subjects. To address the above problems, we first construct a novel high-order D-FCNs based on the principle of "correlation's correlation" to further explore the higher level and more complex interaction relationships among multiple ROIs. Furthermore, we propose to use a central-moment method to extract temporal-invariance properties contained in either low- or high-order D-FCNs. Finally, we design and train an ensemble classifier by fusing the features extracted from conventional FCN, low-order D-FCNs, and high-order D-FCNs for the diagnosis of ASD and normal control subjects. Our method achieved the best ASD classification accuracy (83%), and our results revealed the features extracted from different networks fingerprinting the autistic brain at different connectional levels.
Identifiants
pubmed: 32410930
doi: 10.3389/fnins.2020.00258
pmc: PMC7198826
doi:
Types de publication
Journal Article
Langues
eng
Pagination
258Informations de copyright
Copyright © 2020 Zhao, Chen, Rekik, Lee and Shen.
Références
Connectomics Neuroimaging (2017). 2017;10511:9-16
pubmed: 30345426
Mol Autism. 2011 Apr 18;2(1):4
pubmed: 21501488
Transl Psychiatry. 2015 Aug 11;5:e617
pubmed: 26261885
Neuroimage Clin. 2014 Dec 24;7:359-66
pubmed: 25685703
Hum Brain Mapp. 2019 Feb 15;40(3):833-854
pubmed: 30357998
Front Neurosci. 2017 Aug 02;11:439
pubmed: 28824362
Nat Rev Neurosci. 2015 Mar;16(3):159-72
pubmed: 25697159
IEEE Trans Biomed Eng. 2014 Feb;61(2):576-89
pubmed: 24108708
Mol Psychiatry. 2014 Jun;19(6):659-67
pubmed: 23774715
Ann N Y Acad Sci. 2014 May;1316:29-52
pubmed: 24502540
Brain Connect. 2015 Oct;5(8):476-86
pubmed: 26005203
Hum Brain Mapp. 2016 Jan;37(1):153-64
pubmed: 26485059
AJNR Am J Neuroradiol. 2001 Aug;22(7):1326-33
pubmed: 11498421
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9885-90
pubmed: 20457896
Neuroimage Clin. 2014 Jul 24;5:298-308
pubmed: 25161896
Hum Brain Mapp. 2014 Jul;35(7):3414-30
pubmed: 25050428
J Int Neuropsychol Soc. 2015 Apr;21(4):271-84
pubmed: 25928822
Schizophr Res. 2017 Jun;184:73-81
pubmed: 28011131
Neuroimage. 2002 Jan;15(1):273-89
pubmed: 11771995
Front Neuroinform. 2018 Feb 06;12:3
pubmed: 29467643
Hum Brain Mapp. 2015 Dec;36(12):4880-96
pubmed: 26368659
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):036104
pubmed: 18517458
Neuroimage Clin. 2014 Nov 18;7:203-12
pubmed: 25610782
Hum Brain Mapp. 2017 Feb;38(2):957-973
pubmed: 27726245
Front Neurosci. 2017 Dec 01;11:639
pubmed: 29249926
J Clin Neurosci. 2015 Apr;22(4):664-9
pubmed: 25726458
Genome Res. 2009 Sep;19(9):1639-45
pubmed: 19541911
Psychiatry Res. 2012 Aug-Sep;203(2-3):207-13
pubmed: 22959813
Front Neuroinform. 2018 Oct 26;12:70
pubmed: 30459585
Front Hum Neurosci. 2013 Oct 17;7:670
pubmed: 24151458
J Am Acad Child Adolesc Psychiatry. 2010 Jun;49(6):539-51, 551.e1-4
pubmed: 20494264
Front Neuroinform. 2017 Aug 31;11:55
pubmed: 28912708
J Neurosci. 2006 Jan 4;26(1):63-72
pubmed: 16399673
Hum Brain Mapp. 2016 Sep;37(9):3282-96
pubmed: 27144538
Neuroimage. 2013 Jan 1;64:240-56
pubmed: 22926292
Sci Rep. 2017 Jul 26;7(1):6530
pubmed: 28747782
Brain Imaging Behav. 2016 Jun;10(2):342-56
pubmed: 26123390
Exp Neurobiol. 2015 Dec;24(4):273-84
pubmed: 26713076
Lancet Neurol. 2015 Nov;14(11):1121-34
pubmed: 25891007
Curr Opin Neurobiol. 2007 Feb;17(1):103-11
pubmed: 17275283
Neuroimage. 2017 Apr 1;149:165-177
pubmed: 28132931
Neuroimage. 2013 Aug 1;76:183-201
pubmed: 23499792
Neurosci Biobehav Rev. 2015 May;52:56-73
pubmed: 25684726
IEEE Trans Cybern. 2019 Aug;49(8):3141-3154
pubmed: 29994137
J Alzheimers Dis. 2016 Oct 4;54(3):1095-1112
pubmed: 27567817
Front Hum Neurosci. 2018 May 14;12:184
pubmed: 29867410
Neuroimage. 2013 Oct 15;80:360-78
pubmed: 23707587
IEEE Trans Nanobioscience. 2015 Mar;14(2):237-47
pubmed: 25700453