The Electron-Phonon Interaction of Low-Dimensional and Multi-Dimensional Materials from He Atom Scattering.

electron-phonon interaction helium atom scattering high-dimensional materials quasi-one-dimensional metals transition metal chalcogenides

Journal

Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358

Informations de publication

Date de publication:
Jun 2020
Historique:
received: 25 03 2020
revised: 14 04 2020
accepted: 22 04 2020
pubmed: 16 5 2020
medline: 16 5 2020
entrez: 16 5 2020
Statut: ppublish

Résumé

Atom scattering is becoming recognized as a sensitive probe of the electron-phonon interaction parameter λ at metal and metal-overlayer surfaces. Here, the theory is developed, linking λ to the thermal attenuation of atom scattering spectra (in particular, the Debye-Waller factor), to conducting materials of different dimensions, from quasi-1D systems such as W(110):H(1 × 1) and Bi(114), to quasi-2D layered chalcogenides, and high-dimensional surfaces such as quasicrystalline 2ML-Ba(0001)/Cu(001) and d-AlNiCo(00001). Values of λ obtained using He atoms compare favorably with known values for the bulk materials. The corresponding analysis indicates in addition, the number of layers contributing to the electron-phonon interaction, which is measured in an atom surface collision.

Identifiants

pubmed: 32412161
doi: 10.1002/adma.202002072
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2002072

Subventions

Organisme : Ministerio de Economía, Industria y Competitividad, Gobierno de España
ID : FIS2017-83473-C2-1-P

Informations de copyright

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

For references to the history of 2D superconductivity, see: Y. Saito, T. Nojima, Y. Iwasa, Nat. Rev. Mater. 2017, 2, 16094.
For references see: W. Zhang, C. A. R. Sà de Melo, Quasi-One-Dimensional Organic Superconductors, Peking University-World Scientific Advanced Physics Series, Vol. 5, World Scientific, Singapore 2018.
G. Benedek, S. Miret-Artés, J. R. Manson, A. Ruckhofer, W. E. Wolfgang, A. Tamtögl, J. Phys. Chem. Lett. 2020, 11, 1927.
W. L. McMillan, Phys. Rev. 1968, 167, 331.
G. Grimvall, The Electron-Phonon Interaction in Metals, North-Holland, New York 1981.
P. B. Allen, Phys. Rev. B 1972, 6, 2577.
I. Yu. Sklyadneva, G. Benedek, E. V. Chulkov, P. M. Echenique, R. Heid, K.-P. Bohnen, J. P. Toennies, Phys. Rev. Lett. 2011, 107, 095502.
G. Benedek, M. Bernasconi, K.-P. Bohnen, D. Campi, E. V. Chulkov, P. M. Echenique, R. Heid, I. Yu. Sklyadneva, J. P. Toennies, Phys. Chem. Chem. Phys. 2014, 16, 7159.
J. R. Manson, G. Benedek, S. Miret-Artés, J. Phys. Chem. Lett. 2016, 7, 1016; ibid. 2016, 7, 1691.
G. Benedek, S. Miret-Artés, J. P. Toennies, J. R. Manson, J. Phys. Chem. Lett. 2018, 9, 76.
J. R. Manson, G. Benedek, S. Miret-Artés, unpublished.
T. Zhang, P. Cheng, W.-J. Li, Y.-J. Sun, G. Wang, X.-G. Zhu, K. He, L. Wang, X. Ma, X. Chen, Y. Wang, Y. Liu, H.-Q. Lin, J. F. Jia, Q.-K. Xue, Nat. Phys. 2010, 6, 104.
T. Uchihashi, P. Mishra, M. Aono, T. Nakayama, Phys. Rev. Lett. 2011, 107, 207001.
T. Sekihara, R. Masutomi, T. Okamoto, Phys. Rev. Lett. 2013, 111, 057005.
G. Benedek, I. Yu. Sklyadneva, E. V. Chulkov, P. M. Echenique, R. Heid, K.-P. Bohnen, D. Schmicker, S. Schmidt, J. P. Toennies, Surf. Sci. 2018, 678, 38.
D. Campi, M. Bernasconi, G. Benedek, A. P. Graham, J. P. Toennies, Phys. Chem. Chem. Phys. 2017, 19, 16358.
H. S. M. Coxeter, Introduction to Geometry, 2nd Ed., John Wiley and Sons Inc., New York 1969.
H. C. W. Beijerinck, N. F. Verster, Physica C 1981, 111, 327.
A. S. Palau, S. D. Eder, T. Andersen, A. K. Ravn, G. Bracco, B. Holst, Phys. Rev. A 2018, 98, 063611.
J. L. Beeby, J. Phys. C 1971, 4, L359.
R. E. Peierls, Quantum Theory of Ssolids, Oxford University Press, Oxford, UK 1955.
H. Fröhlich, Proc. R. Soc. A 1954, 223, 296.
M. J. Kelly, L. M. Falicov, Phys. Rev. B 1977, 15, 1974.
M. J. Kelly, L. M. Falicov, Phys. Rev. B 1977, 15, 1983.
M. J. Kelly, L. M. Falicov, Phys. Rev. Lett. 1976, 37, 1021.
R. Liu, T. Ma, S. Wang, J. Yang, Discrete Continuous Dyn. Syst. B 2019, 24, 1411.
T. Ma, S. Wang, Discrete Continuous Dyn. Syst. B 2009, 11, 741.
A. Y. Liu, Phys. Rev. B 2009, 79, 220515(R); calculated for 1T-TaS2 under pressure from 5 GPa (λ = 2.09) to 30 GPa (λ = 0.69).
Ph. Hofmann, M. M. Ugeda, A. Tamtögl, A. Ruckhofer, W. E. Ernst, G. Benedek, A. J. Martínez-Galera, A. Stróżecka, J. M. Gómez-Rodríguez, E. Rienks, M. F. Jensen, J. I. Pascual, J. W. Wells, Phys. Rev. B 2019, 99, 035438.
G. Benedek, Ph. Hofmann, P. Ruggerone, G. Onida, L. Miglio, Surf. Sci. Rep. 1994, 20, 3.
J. W. Wells, J. H. Dil, F. Meier, J. Lobo-Checa, V. N. Petrov, J. Osterwalder, M. M. Ugeda, I. Fernandez-Torrente, J. I. Pascual, E. D. L. Rienks, M. F. Jensen, Ph. Hofmann, Phys. Rev. Lett. 2009, 102, 096802
B. Kohler, P. Ruggerone, M. Scheffler, Phys. Rev. B 1997, 56, 13503.
E. Hulpke, J. Lüdeke, Surf. Sci. 1993, 287, 837.
E. Hulpke, J. Lüdeke, J. Electron Spectrosc. Relat. Phenom. 1993, 64-65, 641.
J. Lüdeke, Thesis, University of Göttingen, Göttingen, Germany 1994; MPI-SF Ber. 15/1994, Göttingen, ISSN 0436-1199.
V. V. Gonchar, Yu. M. Kagan, O. V. Kanash, H. G. Naumovets, A. G. Fedorus, Zh. Eksp. Theor. Fiz. 1983, 84, 249 [Sov. Phys. JETP 1985, 57, 142].
B. D. Barford, R. R. Rye, J. Chem. Phys. 1974, 60, 1046.
E. Rotenberg, S. D. Kevan, J. Electron Spectrosc. Relat. Phenom. 2002, 126, 125.
G. Anemone, A. Al Taleb, G. Benedek, A. Castellanos-Gomez, D. Farías, J. Phys. Chem. C 2019, 123, 3682; sample with surface carrier concentration estimated in the 1012 cm−2 (0.1-1%) range.
S. Choi, Z. Shaolin, W. Yang, J. Korean Phys. Soc. 2014, 64, 1550.
Derived from a screening length of 1.1 nm as given in H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, X. Wang, Nat. Commun. 2013, 4, 2642 for a carrier density close to that of HAS measurements. This is consistent with a carrier effective mass of 0.45 me in H. Peelaers, C. G. Van de Walle, Phys. Rev. B 2012, 86, 241401.
Z. Li, J. P. Carbotte, Physica B 2013, 421, 97.
Y. Ge, A. Y. Liu, Phys. Rev. B 2013, 87, 241408(R).
N. Nayyar, D. Le, V. Turkowski, T. S. Rahman, arXiv:1501.07908, 2015: surface carrier concentration from 1% (λ = 0.12) to 3% (λ = 0.20).
C. Heimlich, Ph.D. Thesis, Georg August University of Göttingen, Göttingen, Germany 1987.
Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y. H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, S. Li, S.-W. Cheong, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2015, 10, 270.
Textured nearly commensurate CDW (NCCDW), see Ref. [46].
T. Shimada, F. S. Ohuchi, B. A. Parkinson, Jpn. J. Appl.Phys. 1994, 33, 2696.
From an estimated electrostatic screening length of < 1 nm, see Ref. [46].
K. Rossnagel, J. Phys. Cond. Matter 2011, 23, 213001.
Metallic incommensurate CDW (ICCDW), see Ref. [46].
N. F. Hinsche, K. S. Thygesen, 2D Mater. 2018, 5, 015009; for the 2H-TaS2 polytype.
D. Tsoutsou, K. E. Aretouli, P. Tsipas, J. Marquez-Velasco, E. Xenogiannopoulou, N. Kelaidis, S. A. Giamini, D. Dimoulas, ACS Appl. Mater. Interfaces 2016, 8, 1836.
Set equal to the crystallographic lattice constant c, encompassing two triple layers, similarly to 1T-TaS2 (001).
D. Bhoi, S. Khim, W. Nam, B. S. Lee, Ch. Kim, B.-G. Jeon, B. H. Min, S. Park, K. H. Kim, Sci. Rep. 2016, 6, 24068.
G. Anemone, P. Casado Aguilar, M. Garnica, A. Al Taleb, C.-N. Kuo, C. S. Lue, A. Politano, A. L. Vàzquez de Parga, G. Benedek, D. Farìas, R. Miranda, unpublished.
F. A. Rasmussen, K. S Thygesen, J. Phys. Chem. C 2015, 119, 13169.
M. K. Hooda, C. S. Yadav, Europhys. Lett. 2018, 121, 17001.
K. Kim, S. Kim, J. S. Kim, H. Kim, J.-H. Park, B. I. Min, Phys. Rev. B 2018, 97, 165102.
G. Anemone, M. Garnica, M. Zappia, P. Casado Aguilar, A. Al Taleb, C.-N. Kuo, C. S. Lue, A. Politano, G. Benedek, A. L. Vàzquez de Parga, R. Miranda, D. Farìas, 2D Mater. 2020, 7, 025007.
B. I. Shklovskii, A. L. Efros, Electronic Properties of Doped Semiconductors, Springer-Verlag, Berlin, Germany 1984.
D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Phys. Rev. Lett. 1984, 53, 1951.
Physical Properties of Quasicrystals (Ed: Z. M. Stadnik), Springer, Berlin, Germany 1999.
Quasicrystals: An Introduction to Structure, Physical Properties and Applications (Eds: J.-B. Suck, M. Schreiber, P. Häussle), Springer, Berlin, Germany 2002.
J.-F. Sadoc, R. Mosseri, J. Phys. France 1990, 51, 205.
A. Bartholmei, P. Fouquet, G. Witte, Surf. Sci. 2001, 473, 227.
G. Benedek, J. P. Toennies, Atomic-Scale Dynamics at Surfaces, Springer, Berlin/Heidelberg, Germany 2018, Equation (7.83).
H. B. Michaelson, J. Appl. Phys. 1977, 48, 4729.
C. Kittel, Introduction to Solid State Physics, J. Wiley & Sons Inc.,   2005, p. 139.
H. R. Sharma, K. J. Franke, W. Theis, P. Gille, P. Ebert, K. H. Rieder, Phys. Rev. B 2003, 68, 054205.
H. R. Sharma, K. J. Franke, W. Theis, A. Riemann, S. Folsch, P. Gille, P. K. H. Rieder, Phys. Rev. B 2004, 70, 235409.
W. Theis, H. R. Sharma, K. J. Franke, K. H. Rieder, Prog. Surf. Sci. 2004, 75, 227.
H. R. Sharma, W. Theis, P. Gille, K. H. Rieder, Surf. Sci. 2002, 511, 387.
V. A. Rogalev, O. Groning, R. Widmer, J. H. Dil, F. Bisti, L. L. Lev, T. Schmitt, V. N. Strocov, Nat. Commun. 2015, 6, 8607.
T. Suzuki, H. R. Sharma, T. Nishimura, M. Shimoda, Y. Yamauchi, A.-P. Tsa, Phys. Rev. B 2005, 72, 115427.
J. Dolinsek, A. Smontara, O. S. Barisic, Z. Kristallogr. 2009, 224, 64.
L. Shuyuan, L. Guohong, Z. Dianlin, Phys. Rev. Lett. 1996, 77, 1998.

Auteurs

Giorgio Benedek (G)

Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal, 4, Donostia-San Sebastian, 20018, Spain.
Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 55, Milano, 20125, Italy.

Joseph R Manson (JR)

Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal, 4, Donostia-San Sebastian, 20018, Spain.
Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.

Salvador Miret-Artés (S)

Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal, 4, Donostia-San Sebastian, 20018, Spain.
Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, Madrid, 28006, Spain.

Classifications MeSH