Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
15 May 2020
15 May 2020
Historique:
received:
20
05
2019
accepted:
22
04
2020
entrez:
17
5
2020
pubmed:
18
5
2020
medline:
18
5
2020
Statut:
epublish
Résumé
Directed high-speed motion of nanoscale objects in fluids can have a wide range of applications like molecular machinery, nano robotics, and material assembly. Here, we report ballistic plasmonic Au nanoparticle (NP) swimmers with unprecedented speeds (~336,000 μm s
Identifiants
pubmed: 32415076
doi: 10.1038/s41467-020-16267-9
pii: 10.1038/s41467-020-16267-9
pmc: PMC7228977
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2404Subventions
Organisme : National Science Foundation (NSF)
ID : 1937923
Organisme : Center for the Advancement of Science in Space (CASIS)
ID : GA-2018-268
Références
Strebhardt, K. & Ullrich, A. Poul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 8, 473–480 (2008).
pubmed: 18469827
doi: 10.1038/nrc2394
pmcid: 18469827
Sanchez, M. M. & Schmidt, O. G. Medical microbots need better imaging and control. Nature 545, 406–408 (2017).
doi: 10.1038/545406a
Luo, M., Feng, T., Wang, T. & Guan, J. Micro-/nanobots at work in active drug delivery. Adv. Funct. Mater. 28, 1706100 (2018).
doi: 10.1002/adfm.201706100
Gao, W., Sattayasmitsathit, S. & Wang, J. Catalytically propelled micro-/nanomotors: how fast can they move? Chem. Rec. 12, 224–231 (2012).
pubmed: 22162283
doi: 10.1002/tcr.201100031
pmcid: 22162283
Manjare, M., Yang, B. & Zhao, Y.-P. Bubble driven quasioscillatory translational motion of catalytic micromotors. Phy. Rev. Lett. 109, 128305 (2012).
doi: 10.1103/PhysRevLett.109.128305
Baylis, J. R. et al. Self-propelled particles that transport cargo through flowing blood and halt hemorrhage. Sci. Adv 1, e1500379 (2015).
pubmed: 26601282
pmcid: 4646796
doi: 10.1126/sciadv.1500379
Kagan, D. et al. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew. Chem. Int. Ed. 51, 7519–7522 (2012).
doi: 10.1002/anie.201201902
Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).
doi: 10.1119/1.10903
Sing, C. E., Schmid, L., Schneider, M. F., Franke, T. & Kats, A. A. Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proc. Natl. Acad. Sci. 107, 535–540 (2010).
pubmed: 20080716
doi: 10.1073/pnas.0906489107
pmcid: 20080716
Ghosh, A. & Fischer, P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 2243–2245 (2009).
pubmed: 19413293
doi: 10.1021/nl900186w
pmcid: 19413293
Wu, Z. et al. Turning erythrocytes into functional micromotors. ACS Nano 8, 12401–12048 (2014).
Xuan, M. et al. Near infrared light-powered janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 138, 6492–6497 (2016).
pubmed: 27152728
doi: 10.1021/jacs.6b00902
pmcid: 27152728
Xuan, M. et al. Self-propelled nanomotors for thermomechanically percolating cell membranes. Angew. Chem. Int. Ed. 57, 12463–12467 (2018).
doi: 10.1002/anie.201806759
Chen, C. et al. Light-steered isotropic semiconductor micromotors. Adv. Mater. 29, 1603374 (2017).
doi: 10.1002/adma.201603374
Wang, Y. et al. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22, 10451–10456 (2006).
pubmed: 17129015
doi: 10.1021/la0615950
pmcid: 17129015
Ibele, M., Mallouk, T. E. & Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 48, 3308–3312 (2009).
doi: 10.1002/anie.200804704
Konlger, A. & Kohler, W. Optical funnerling and trapping of gold colloids in convergent laser beam. ASC Nano 6, 4400–4409 (2012).
doi: 10.1021/nn301080a
Kajorndejnukul, V., Ding, W., Sukhov, S., Qiu, C.-Q. & Dogariu, A. Linear momentum increase and negative optical forces at dielectric interface. Nat. Photon. 7, 787–790 (2013).
doi: 10.1038/nphoton.2013.192
Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).
pubmed: 19730608
doi: 10.1364/OL.11.000288
pmcid: 19730608
Lehmuskero, A., Johansson, P., Dunlop, H. R., Tong, L. & Kall, M. Laser trapping of colloidal metal nanoparticles. ACS Nano 9, 3453–3469 (2015).
pubmed: 25808609
doi: 10.1021/acsnano.5b00286
pmcid: 25808609
Dogariu, A., Sukhov, S. & Saenz, J. J. Optically induced ‘negative forces’. Nat. Photon. 7, 24–27 (2013).
doi: 10.1038/nphoton.2012.315
Chen, J., Ng, J., Lin, Z. & Chan, C. T. Optical pulling force. Nat. Photon. 5, 531–534 (2011).
doi: 10.1038/nphoton.2011.153
Bzrobohaty, O. et al. Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’. Nat. Photon. 7, 123–127 (2013).
doi: 10.1038/nphoton.2012.332
Damkova, J. et al. Enhancement of the ‘tractor-beam’ pulling force on an optically bound structure. Light Sci. Appl. 7, 17135 (2018).
pubmed: 30839610
pmcid: 6107043
doi: 10.1038/lsa.2017.135
Gao, D., Shi, R., Huang, Y. & Gao, L. Fano-enhanced pulling and pushing optical force on active plasmonic particles. Phys. Rev. A 96, 043826 (2017).
doi: 10.1103/PhysRevA.96.043826
Mizrahi, A. & Fainman, Y. Negative radiation pressure on gain medium structures. Opt. Lett. 35, 3405–3407 (2010).
pubmed: 20967081
doi: 10.1364/OL.35.003405
pmcid: 20967081
Guo, G., Feng, T. & Xu, Y. Tunable optical pulling force mediated by resonant electromagnetic coupling. Opt. Lett. 43, 4961–4964 (2018).
pubmed: 30320794
doi: 10.1364/OL.43.004961
pmcid: 30320794
Xu, L., Mou, F., Gong, H., Luo, M. & Guan, J. Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46, 6905–6926 (2017).
pubmed: 28949354
doi: 10.1039/C7CS00516D
pmcid: 28949354
Seol, Y., Carpenter, A. E. & Perkins, T. T. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429–2431 (2006).
pubmed: 16880845
doi: 10.1364/OL.31.002429
pmcid: 16880845
Fu, X., Chen, B., Tang, J. & Zewail, A. H. Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy. Sci. Adv. 3, e1701160 (2017).
pubmed: 28875170
pmcid: 5573307
doi: 10.1126/sciadv.1701160
Lukianova-Hleb, E., Volkov, A. N. & Lapotko, D. O. Laser pulse duration is critical for generation of plasmonic nanobubbles. Langmuir 30, 7425–7434 (2014).
pubmed: 24916057
pmcid: 4082386
doi: 10.1021/la5015362
Lachaine, R. et al. Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation. Nano Lett. 16, 3187–3194 (2016).
pubmed: 27048763
doi: 10.1021/acs.nanolett.6b00562
pmcid: 27048763
Metwally, K., Mensah, S. & Baffou, G. Fluence threshold for photothermal bubble generation using plasmonic nanoparticles. J. Phys. Chem. C 119, 28586–28596 (2015).
doi: 10.1021/acs.jpcc.5b09903
Hodak, J. H., Henglein, A., Giersig., M. & Hartland, G. V. Laser-induced inter-diffusion in AuAg core–shell nanoparticles. J. Phys. Chem. B 104, 11708–11718 (2000).
doi: 10.1021/jp002438r
Sasikumar, K. & Keblinski, P. Molecular dynamics investigation of nanoscale cavitation dynamics. J. Chem. Phys. 141, 234508 (2014).
pubmed: 25527949
doi: 10.1063/1.4903783
pmcid: 25527949
Merabia, S., Keblinski, P., Joly, L., Lewis, L. J. & Barrat, J.-L. Critical heat flux around strongly heated nanoparticles. Phys. Rev. E 79, 021404 (2009).
doi: 10.1103/PhysRevE.79.021404
Maheshwari, S., van der Hoef, M., Prosperetti, A. & Lohse, D. Dynamics of formation of a vapor nanobubble around a heated nanoparticle. J. Phys. Chem. C 122, 20571–20580 (2018).
doi: 10.1021/acs.jpcc.8b04017
Trojek, J., Chvatal, L. & Zemanek, P. Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study. J. Opt. Soc. Am. A 29, 1224–1236 (2012).
doi: 10.1364/JOSAA.29.001224
Preez-Wilkinson, N. et al. Forces due to pulsed beams in optical tweezers: linear effects. Opt. Express 23, 7190–7208 (2015).
pubmed: 25837064
doi: 10.1364/OE.23.007190
pmcid: 25837064
Salandrino, A., Fardad, S. & Christodoulides, D. N. Generalized Mie theory of optical forces. J. Opt. Soc. Am. B 29, 855–866 (2012).
doi: 10.1364/JOSAB.29.000855
Gao, D. et al. Unveiling the correlation between non-diffracting tractor beam and its singularity in Poynting vector. Laser Photon. Rev. 9, 75–82 (2015).
doi: 10.1002/lpor.201400071
Vakarelski, I. U. et al. Self-determined shapes and velocities of giant near-zero drage gas cavities. Sci. Adv. 3, e1701558 (2017).
pubmed: 28913434
pmcid: 5590785
doi: 10.1126/sciadv.1701558
Ng, K. Overview of the ONR supercavitating high-speed bodies program. AIAA Guid. Navig. Control Conf. Exhibit. https://doi.org/10.2514/6.2006-6440 (2006).
Ellingsen, S. A. Theory of microdroplet and microbubble deformation by Gaussian laser beam. J. Opt. Soc. Am. B 30, 1694–1710 (2013).
doi: 10.1364/JOSAB.30.001694
Li, C. et al. Nanostructured copper interfaces for enhanced boiling. Small 4, 1084–1088 (2008).
pubmed: 18570277
doi: 10.1002/smll.200700991
pmcid: 18570277