Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
15 May 2020
Historique:
received: 20 05 2019
accepted: 22 04 2020
entrez: 17 5 2020
pubmed: 18 5 2020
medline: 18 5 2020
Statut: epublish

Résumé

Directed high-speed motion of nanoscale objects in fluids can have a wide range of applications like molecular machinery, nano robotics, and material assembly. Here, we report ballistic plasmonic Au nanoparticle (NP) swimmers with unprecedented speeds (~336,000 μm s

Identifiants

pubmed: 32415076
doi: 10.1038/s41467-020-16267-9
pii: 10.1038/s41467-020-16267-9
pmc: PMC7228977
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2404

Subventions

Organisme : National Science Foundation (NSF)
ID : 1937923
Organisme : Center for the Advancement of Science in Space (CASIS)
ID : GA-2018-268

Références

Strebhardt, K. & Ullrich, A. Poul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 8, 473–480 (2008).
pubmed: 18469827 doi: 10.1038/nrc2394 pmcid: 18469827
Sanchez, M. M. & Schmidt, O. G. Medical microbots need better imaging and control. Nature 545, 406–408 (2017).
doi: 10.1038/545406a
Luo, M., Feng, T., Wang, T. & Guan, J. Micro-/nanobots at work in active drug delivery. Adv. Funct. Mater. 28, 1706100 (2018).
doi: 10.1002/adfm.201706100
Gao, W., Sattayasmitsathit, S. & Wang, J. Catalytically propelled micro-/nanomotors: how fast can they move? Chem. Rec. 12, 224–231 (2012).
pubmed: 22162283 doi: 10.1002/tcr.201100031 pmcid: 22162283
Manjare, M., Yang, B. & Zhao, Y.-P. Bubble driven quasioscillatory translational motion of catalytic micromotors. Phy. Rev. Lett. 109, 128305 (2012).
doi: 10.1103/PhysRevLett.109.128305
Baylis, J. R. et al. Self-propelled particles that transport cargo through flowing blood and halt hemorrhage. Sci. Adv 1, e1500379 (2015).
pubmed: 26601282 pmcid: 4646796 doi: 10.1126/sciadv.1500379
Kagan, D. et al. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew. Chem. Int. Ed. 51, 7519–7522 (2012).
doi: 10.1002/anie.201201902
Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).
doi: 10.1119/1.10903
Sing, C. E., Schmid, L., Schneider, M. F., Franke, T. & Kats, A. A. Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proc. Natl. Acad. Sci. 107, 535–540 (2010).
pubmed: 20080716 doi: 10.1073/pnas.0906489107 pmcid: 20080716
Ghosh, A. & Fischer, P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 2243–2245 (2009).
pubmed: 19413293 doi: 10.1021/nl900186w pmcid: 19413293
Wu, Z. et al. Turning erythrocytes into functional micromotors. ACS Nano 8, 12401–12048 (2014).
Xuan, M. et al. Near infrared light-powered janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 138, 6492–6497 (2016).
pubmed: 27152728 doi: 10.1021/jacs.6b00902 pmcid: 27152728
Xuan, M. et al. Self-propelled nanomotors for thermomechanically percolating cell membranes. Angew. Chem. Int. Ed. 57, 12463–12467 (2018).
doi: 10.1002/anie.201806759
Chen, C. et al. Light-steered isotropic semiconductor micromotors. Adv. Mater. 29, 1603374 (2017).
doi: 10.1002/adma.201603374
Wang, Y. et al. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22, 10451–10456 (2006).
pubmed: 17129015 doi: 10.1021/la0615950 pmcid: 17129015
Ibele, M., Mallouk, T. E. & Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 48, 3308–3312 (2009).
doi: 10.1002/anie.200804704
Konlger, A. & Kohler, W. Optical funnerling and trapping of gold colloids in convergent laser beam. ASC Nano 6, 4400–4409 (2012).
doi: 10.1021/nn301080a
Kajorndejnukul, V., Ding, W., Sukhov, S., Qiu, C.-Q. & Dogariu, A. Linear momentum increase and negative optical forces at dielectric interface. Nat. Photon. 7, 787–790 (2013).
doi: 10.1038/nphoton.2013.192
Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).
pubmed: 19730608 doi: 10.1364/OL.11.000288 pmcid: 19730608
Lehmuskero, A., Johansson, P., Dunlop, H. R., Tong, L. & Kall, M. Laser trapping of colloidal metal nanoparticles. ACS Nano 9, 3453–3469 (2015).
pubmed: 25808609 doi: 10.1021/acsnano.5b00286 pmcid: 25808609
Dogariu, A., Sukhov, S. & Saenz, J. J. Optically induced ‘negative forces’. Nat. Photon. 7, 24–27 (2013).
doi: 10.1038/nphoton.2012.315
Chen, J., Ng, J., Lin, Z. & Chan, C. T. Optical pulling force. Nat. Photon. 5, 531–534 (2011).
doi: 10.1038/nphoton.2011.153
Bzrobohaty, O. et al. Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’. Nat. Photon. 7, 123–127 (2013).
doi: 10.1038/nphoton.2012.332
Damkova, J. et al. Enhancement of the ‘tractor-beam’ pulling force on an optically bound structure. Light Sci. Appl. 7, 17135 (2018).
pubmed: 30839610 pmcid: 6107043 doi: 10.1038/lsa.2017.135
Gao, D., Shi, R., Huang, Y. & Gao, L. Fano-enhanced pulling and pushing optical force on active plasmonic particles. Phys. Rev. A 96, 043826 (2017).
doi: 10.1103/PhysRevA.96.043826
Mizrahi, A. & Fainman, Y. Negative radiation pressure on gain medium structures. Opt. Lett. 35, 3405–3407 (2010).
pubmed: 20967081 doi: 10.1364/OL.35.003405 pmcid: 20967081
Guo, G., Feng, T. & Xu, Y. Tunable optical pulling force mediated by resonant electromagnetic coupling. Opt. Lett. 43, 4961–4964 (2018).
pubmed: 30320794 doi: 10.1364/OL.43.004961 pmcid: 30320794
Xu, L., Mou, F., Gong, H., Luo, M. & Guan, J. Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46, 6905–6926 (2017).
pubmed: 28949354 doi: 10.1039/C7CS00516D pmcid: 28949354
Seol, Y., Carpenter, A. E. & Perkins, T. T. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429–2431 (2006).
pubmed: 16880845 doi: 10.1364/OL.31.002429 pmcid: 16880845
Fu, X., Chen, B., Tang, J. & Zewail, A. H. Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy. Sci. Adv. 3, e1701160 (2017).
pubmed: 28875170 pmcid: 5573307 doi: 10.1126/sciadv.1701160
Lukianova-Hleb, E., Volkov, A. N. & Lapotko, D. O. Laser pulse duration is critical for generation of plasmonic nanobubbles. Langmuir 30, 7425–7434 (2014).
pubmed: 24916057 pmcid: 4082386 doi: 10.1021/la5015362
Lachaine, R. et al. Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation. Nano Lett. 16, 3187–3194 (2016).
pubmed: 27048763 doi: 10.1021/acs.nanolett.6b00562 pmcid: 27048763
Metwally, K., Mensah, S. & Baffou, G. Fluence threshold for photothermal bubble generation using plasmonic nanoparticles. J. Phys. Chem. C 119, 28586–28596 (2015).
doi: 10.1021/acs.jpcc.5b09903
Hodak, J. H., Henglein, A., Giersig., M. & Hartland, G. V. Laser-induced inter-diffusion in AuAg core–shell nanoparticles. J. Phys. Chem. B 104, 11708–11718 (2000).
doi: 10.1021/jp002438r
Sasikumar, K. & Keblinski, P. Molecular dynamics investigation of nanoscale cavitation dynamics. J. Chem. Phys. 141, 234508 (2014).
pubmed: 25527949 doi: 10.1063/1.4903783 pmcid: 25527949
Merabia, S., Keblinski, P., Joly, L., Lewis, L. J. & Barrat, J.-L. Critical heat flux around strongly heated nanoparticles. Phys. Rev. E 79, 021404 (2009).
doi: 10.1103/PhysRevE.79.021404
Maheshwari, S., van der Hoef, M., Prosperetti, A. & Lohse, D. Dynamics of formation of a vapor nanobubble around a heated nanoparticle. J. Phys. Chem. C 122, 20571–20580 (2018).
doi: 10.1021/acs.jpcc.8b04017
Trojek, J., Chvatal, L. & Zemanek, P. Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study. J. Opt. Soc. Am. A 29, 1224–1236 (2012).
doi: 10.1364/JOSAA.29.001224
Preez-Wilkinson, N. et al. Forces due to pulsed beams in optical tweezers: linear effects. Opt. Express 23, 7190–7208 (2015).
pubmed: 25837064 doi: 10.1364/OE.23.007190 pmcid: 25837064
Salandrino, A., Fardad, S. & Christodoulides, D. N. Generalized Mie theory of optical forces. J. Opt. Soc. Am. B 29, 855–866 (2012).
doi: 10.1364/JOSAB.29.000855
Gao, D. et al. Unveiling the correlation between non-diffracting tractor beam and its singularity in Poynting vector. Laser Photon. Rev. 9, 75–82 (2015).
doi: 10.1002/lpor.201400071
Vakarelski, I. U. et al. Self-determined shapes and velocities of giant near-zero drage gas cavities. Sci. Adv. 3, e1701558 (2017).
pubmed: 28913434 pmcid: 5590785 doi: 10.1126/sciadv.1701558
Ng, K. Overview of the ONR supercavitating high-speed bodies program. AIAA Guid. Navig. Control Conf. Exhibit. https://doi.org/10.2514/6.2006-6440 (2006).
Ellingsen, S. A. Theory of microdroplet and microbubble deformation by Gaussian laser beam. J. Opt. Soc. Am. B 30, 1694–1710 (2013).
doi: 10.1364/JOSAB.30.001694
Li, C. et al. Nanostructured copper interfaces for enhanced boiling. Small 4, 1084–1088 (2008).
pubmed: 18570277 doi: 10.1002/smll.200700991 pmcid: 18570277

Auteurs

Eungkyu Lee (E)

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.

Dezhao Huang (D)

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.

Tengfei Luo (T)

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA. tluo@nd.edu.
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA. tluo@nd.edu.
Center for Sustainable Energy of Notre Dame (ND Energy), University of Notre Dame, Notre Dame, IN, 46556, USA. tluo@nd.edu.

Classifications MeSH