mRNA display with library of even-distribution reveals cellular interactors of influenza virus NS1.
A549 Cells
Fatty Acid Synthase, Type I
/ metabolism
Gene Library
Gene Ontology
Humans
Influenza A virus
/ drug effects
Interferons
/ pharmacology
Lipid Metabolism
/ drug effects
Mutation
/ genetics
Protein Binding
/ drug effects
RNA, Messenger
/ genetics
Viral Nonstructural Proteins
/ metabolism
Virus Replication
/ drug effects
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
15 05 2020
15 05 2020
Historique:
received:
19
03
2019
accepted:
13
04
2020
entrez:
17
5
2020
pubmed:
18
5
2020
medline:
13
8
2020
Statut:
epublish
Résumé
A comprehensive examination of protein-protein interactions (PPIs) is fundamental for the understanding of cellular machineries. However, limitations in current methodologies often prevent the detection of PPIs with low abundance proteins. To overcome this challenge, we develop a mRNA display with library of even-distribution (md-LED) method that facilitates the detection of low abundance binders with high specificity and sensitivity. As a proof-of-principle, we apply md-LED to IAV NS1 protein. Complementary to AP-MS, md-LED enables us to validate previously described PPIs as well as to identify novel NS1 interactors. We show that interacting with FASN allows NS1 to directly regulate the synthesis of cellular fatty acids. We also use md-LED to identify a mutant of NS1, D92Y, results in a loss of interaction with CPSF1. The use of high-throughput sequencing as the readout for md-LED enables sensitive quantification of interactions, ultimately enabling massively parallel experimentation for the investigation of PPIs.
Identifiants
pubmed: 32415096
doi: 10.1038/s41467-020-16140-9
pii: 10.1038/s41467-020-16140-9
pmc: PMC7229031
doi:
Substances chimiques
INS1 protein, influenza virus
0
RNA, Messenger
0
Viral Nonstructural Proteins
0
Interferons
9008-11-1
FASN protein, human
EC 2.3.1.85
Fatty Acid Synthase, Type I
EC 2.3.1.85
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
2449Subventions
Organisme : NCI NIH HHS
ID : P01 CA177322
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI135972
Pays : United States
Références
Tripathi, S. et al. Meta- and Orthogonal Integration of Influenza ‘oMICs’ Data Defines a Role for UBR4 in Virus Budding. Cell Host Microbe 18, 723–735 (2015).
pubmed: 26651948
pmcid: 4829074
doi: 10.1016/j.chom.2015.11.002
Watanabe, T. et al. Influenza virus-host interactome screen as a platform for antiviral drug development. Cell Host Microbe 16, 795–805 (2014).
pubmed: 25464832
pmcid: 4451456
doi: 10.1016/j.chom.2014.11.002
Brass, A. L. et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319, 921–926 (2008).
doi: 10.1126/science.1152725
König, R. & Stertz, S. Recent strategies and progress in identifying host factors involved in virus replication. Curr. Opin. Microbiol. 26, 79–88 (2015).
pubmed: 26112615
pmcid: 7185747
doi: 10.1016/j.mib.2015.06.001
Karlas, A. et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463, 818–822 (2010).
pubmed: 20081832
doi: 10.1038/nature08760
Gack, M. U. et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by RIG-I. Cell Host Microbe 5, 439–449 (2010).
doi: 10.1016/j.chom.2009.04.006
Shapira, S. D. et al. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139, 1255–1267 (2009).
pubmed: 20064372
pmcid: 2892837
doi: 10.1016/j.cell.2009.12.018
Lee, S. et al. An integrated approach to elucidate the intra-viral and viral-cellular protein interaction networks of a gamma-herpesvirus. PLoS Pathog. 7, e1002297 (2011).
pubmed: 22028648
pmcid: 3197595
doi: 10.1371/journal.ppat.1002297
König, R. et al. Human host factors required for influenza virus replication. Nature 463, 813–817 (2010).
pubmed: 20027183
pmcid: 2862546
doi: 10.1038/nature08699
Wang, L. et al. Comparative influenza protein interactomes identify the role of plakophilin 2 in virus restriction. Nat. Commun. 8, 1–12 (2017).
doi: 10.1038/s41467-016-0009-6
Levy, M. J., Washburn, M. P. & Florens, L. Probing the sensitivity of the orbitrap lumos mass spectrometer using a standard reference protein in a complex background. J. Proteome Res. 17, 3586–3592 (2018).
pubmed: 30180573
pmcid: 6836688
doi: 10.1021/acs.jproteome.8b00269
Joung, J. K., Ramm, E. I. & Pabo, C. O. A bacterial two-hybrid selection system for studying protein–DNA and protein–protein interactions. Proc. Natl Acad. Sci. USA 97, 7382–7387 (2000).
pubmed: 10852947
doi: 10.1073/pnas.110149297
Fields, S., Song, O. & Schnier, J. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).
doi: 10.1038/340245a0
Smith, G. P. & Petrenko, V. A. Phage display. Chem. Rev. 97, 391–410 (1997).
pubmed: 11848876
doi: 10.1021/cr960065d
Kim, S.-H. & Park, S.-Y. Selection and characterization of human antibodies against hepatitis B virus surface antigen (HBsAg) by phage-display. Hybrid. Hybridomics 21, 385–392 (2002).
pubmed: 12470482
doi: 10.1089/153685902761022742
Galán, A. et al. Library-based display technologies: where do we stand? Mol. BioSyst. 12, 2342–2358 (2016).
pubmed: 27306919
doi: 10.1039/C6MB00219F
Pepper, L. R., Cho, Y. K., Boder, E. T. & Shusta, E. V. A decade of yeast surface display technology: where are we now? Comb. Chem. High. Throughput Screen 11, 127–134 (2008).
pubmed: 18336206
pmcid: 2681324
doi: 10.2174/138620708783744516
Cherf, G. M. & Cochran, J. R. Applications of yeast surface display for protein engineering. in Yeast Surface Display 155–175 (Humana Press, New York, 2015).
Weaver-Feldhaus, J. M. et al. Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett. 564, 24–34 (2004).
pubmed: 15094038
doi: 10.1016/S0014-5793(04)00309-6
Manuscript, A. & Libraries, N. P. Ribosome display and related technologies (Humana Press, New York, 2012).
Schaffitzel, C., Hanes, J., Jermutus, L. & Plückthun, A. Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. J. Immunol. Methods 231, 119–135 (1999).
pubmed: 10648932
doi: 10.1016/S0022-1759(99)00149-0
Cujec, T. P., Medeiros, P. F., Hammond, P., Rise, C. & Kreider, B. L. Selection of v-abl tyrosine kinase substrate sequences from randomized peptide and cellular proteomic libraries using mRNA display. Chem. Biol. 9, 253–264 (2002).
pubmed: 11880040
doi: 10.1016/S1074-5521(02)00098-4
Wilson, D. S., Keefe, A. D. & Szostak, J. W. The use of mRNA display to select high-affinity protein-binding peptides. Proc. Natl Acad. Sci. USA 98, 3750–3755 (2001).
pubmed: 11274392
doi: 10.1073/pnas.061028198
Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).
pubmed: 4001944
doi: 10.1126/science.4001944
McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552 (1990).
pubmed: 2247164
doi: 10.1038/348552a0
Vega, N. M., Allison, K. R., Khalil, A. S. & Collins, J. J. Signaling-mediated bacterial persister formation. Nat. Chem. Biol. 8, 431–433 (2012).
pubmed: 3329571
pmcid: 3329571
doi: 10.1038/nchembio.915
Wang, H. & Liu, R. Advantages of mRNA display selections over other selection techniques for investigation of protein-protein interactions. Expert Rev. Proteom. 8, 335–346 (2011).
doi: 10.1586/epr.11.15
Huang, B. C. & Liu, R. Comparison of mRNA-display-based selections using synthetic peptide and natural protein libraries. Biochemistry 46, 10102–10112 (2007).
pubmed: 17685586
doi: 10.1021/bi700220x
Olson, C. A., Wu, N. C. & Sun, R. A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. Curr. Biol. 24, 2643–2651 (2014).
pubmed: 25455030
pmcid: 4254498
doi: 10.1016/j.cub.2014.09.072
Olson, C. A. et al. Rapid mRNA-Display Selection of an IL-6 Inhibitor Using Continuous-Flow Magnetic Separation. Angew. Chem. Int. Ed. 50, 8295–8298 (2011).
doi: 10.1002/anie.201101149
Olson, C. A. et al. Single-round, multiplexed antibody mimetic design through mRNA display. Angew. Chem. Int. Ed. 51, 12449–12453 (2012).
doi: 10.1002/anie.201207005
Shen, X. et al. Scanning the human proteome for calmodulin-binding proteins. Proc. Natl Acad. Sci. USA 102, 5969–5974 (2005).
pubmed: 15840729
doi: 10.1073/pnas.0407928102
Ju, W. et al. Proteome-wide identification of family member-specific natural substrate repertoire of caspases. Proc. Natl Acad. Sci. USA 104, 14294–14299 (2007).
pubmed: 17728405
doi: 10.1073/pnas.0702251104
Hale, B. G., Randall, R. E., Ortín, J. & Jackson, D. The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 89, 2359–2376 (2008).
pubmed: 18796704
doi: 10.1099/vir.0.2008/004606-0
Kochs, G., Garcia-Sastre, A. & Martinez-Sobrido, L. Multiple anti-interferon actions of the influenza A virus NS1 protein. J. Virol. 81, 7011–7021 (2007).
pubmed: 17442719
pmcid: 1933316
doi: 10.1128/JVI.02581-06
Das, K. et al. Structural basis for suppression of a host antiviral response by influenza A virus. Proc. Natl Acad. Sci. USA 105, 13093–13098 (2008).
pubmed: 18725644
doi: 10.1073/pnas.0805213105
Burgui, I., Aragón, T., Ortín, J. & Nieto, A. PABP1 and eIF4GI associate with influenza virus NS1 protein in viral mRNA translation initiation complexes. J. Gen. Virol. 84, 3263–3274 (2003).
pubmed: 14645908
doi: 10.1099/vir.0.19487-0
Dubois, J., Terrier, O. & Rosa-Calatrava, M. Influenza viruses and mRNA splicing: Doing more with less. MBio 5, 1–13 (2014).
doi: 10.1128/mBio.00070-14
Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).
pubmed: 27924014
pmcid: 27924014
doi: 10.1093/nar/gkw937
Davis, Z. H. et al. Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol. Cell 57, 349–360 (2015).
pubmed: 25544563
doi: 10.1016/j.molcel.2014.11.026
Batra, J. et al. Protein interaction mapping identifies RBBP6 as a negative regulator of Ebola virus replication article protein interaction mapping identifies RBBP6 as a negative regulator of Ebola virus replication. Cell 175, e13 (2018).
doi: 10.1016/j.cell.2018.08.044
Ruepp, A. et al. CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res. 36, 646–650 (2008).
doi: 10.1093/nar/gkm936
Ruepp, A. et al. CORUM: the comprehensive resource of mammalian protein complexes-2009. Nucleic Acids Res. 38, 497–501 (2009).
doi: 10.1093/nar/gkp914
Guirimand, T., Navratil, V. & Lyon, D. VirHostNet 2. 0: surfing on the web of virus/host. Nucleic Acids Res. 43, 583–587 (2015).
doi: 10.1093/nar/gku1121
Hultin-Rosenberg, L., Forshed, J., Branca, R. M. M., Lehtiö, J. & Johansson, H. J. Defining, comparing, and improving iTRAQ quantification in mass spectrometry proteomics data. Mol. Cell. Proteom. 12, 2021–2031 (2013).
doi: 10.1074/mcp.M112.021592
Tisoncik-go, J. et al. Integrated omics analysis of pathogenic host responses during pandemic H1N1 influenza virus infection: the crucial role of lipid metabolism resource integrated omics analysis of pathogenic host responses during pandemic H1N1 influenza virus infection: T. Cell Host Microbe 19, 254–266 (2016).
pubmed: 26867183
pmcid: 5271177
doi: 10.1016/j.chom.2016.01.002
Munger, J. et al. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat. Biotechnol. 26, 1179–1186 (2008).
pubmed: 18820684
pmcid: 2825756
doi: 10.1038/nbt.1500
Williams, K. J. et al. An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Res. 73, 2850–2862 (2013).
pubmed: 23440422
pmcid: 3919498
doi: 10.1158/0008-5472.CAN-13-0382-T
Ehrhardt, C. et al. Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. J. Virol. 81, 3058–3067 (2007).
pubmed: 17229704
pmcid: 1866065
doi: 10.1128/JVI.02082-06
Chen, G., Liu, C.-H., Zhou, L. & Krug, R. M. Cellular DDX21 RNA helicase inhibits influenza A virus replication but is counteracted by the viral NS1 protein. Cell Host Microbe 15, 484–493 (2014).
pubmed: 24721576
pmcid: 4039189
doi: 10.1016/j.chom.2014.03.002
Wu, N. C. et al. High-throughput identification of loss-of-function mutations for anti-interferon activity in the influenza A virus NS segment. J. Virol. 88, 10157–10164 (2014).
pubmed: 24965464
pmcid: 4136320
doi: 10.1128/JVI.01494-14
Letunic, I., Doerks, T. & Bork, P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43, D257–D260 (2015).
pubmed: 25300481
doi: 10.1093/nar/gku949
Letunic, I. & Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 1–4. https://doi.org/10.1093/nar/gkx922 (2017).
Dosztányi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434 (2005).
pubmed: 15955779
pmcid: 15955779
doi: 10.1093/bioinformatics/bti541
Dosztányi, Z., Csizmók, V., Tompa, P. & Simon, I. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J. Mol. Biol. 347, 827–839 (2005).
pubmed: 15769473
doi: 10.1016/j.jmb.2005.01.071
Yates, J. R. Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct. 33, 297–316 (2004).
pubmed: 15139815
doi: 10.1146/annurev.biophys.33.111502.082538
Zhang, Y., Fonslow, B. R., Shan, B., Baek, M. & Yates, J. R. Protein analysis by shotgun/bottom-up proteomics. https://doi.org/10.1021/cr3003533 (2013).
Miller, K. E. et al. Bimolecular fluorescence complementation(BiFC) analysis: advances and recent applications for genome-wide interaction studies. J. Mol. Biol. 427, 2039–2055 (2016).
doi: 10.1016/j.jmb.2015.03.005
Sung, M. K. et al. Genome-wide bimolecular fluorescence complementation analysis of SUMO interactome in yeast. Genome Res. 23, 736–746 (2013).
pubmed: 23403034
pmcid: 3613590
doi: 10.1101/gr.148346.112
Havugimana, P. C. et al. A census of human soluble protein complexes. Cell 150, 1068–1081 (2012).
pubmed: 22939629
pmcid: 3477804
doi: 10.1016/j.cell.2012.08.011
Shin, Y. et al. SH3 binding motif 1 in influenza A virus NS1 protein is essential for PI3K/Akt signaling pathway activation. J. Virol. 81, 12730–12739 (2007).
pubmed: 17881440
pmcid: 2169092
doi: 10.1128/JVI.01427-07
York, A. G. et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716–1729 (2015).
pubmed: 26686653
pmcid: 4783382
doi: 10.1016/j.cell.2015.11.045
Heaton, N. S. & Randall, G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422–432 (2010).
pubmed: 21075353
pmcid: 3026642
doi: 10.1016/j.chom.2010.10.006
Heaton, N. S. et al. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc. Natl Acad. Sci. USA 107, 17345–17350 (2010).
pubmed: 20855599
doi: 10.1073/pnas.1010811107
Nasheri, N. et al. Modulation of fatty acid synthase enzyme activity and expression during hepatitis C virus replication. Chem. Biol. 20, 570–582 (2013).
pubmed: 23601646
doi: 10.1016/j.chembiol.2013.03.014
Ichihara, K. & Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res.51, 635–640 (2010).
pubmed: 19759389
pmcid: 2817593
doi: 10.1194/jlr.D001065
Qi, H. et al. Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein. Proc. Natl Acad. Sci. USA 114, 3–8 (2018).
Lutz, A., Dyall, J., Olivo, P. D. & Pekosz, A. Virus-inducible reporter genes as a tool for detecting and quantifying influenza A virus replication. J. Virol. Methods 126, 13–20 (2005).
pubmed: 15847914
pmcid: 1698269
doi: 10.1016/j.jviromet.2005.01.016