mRNA display with library of even-distribution reveals cellular interactors of influenza virus NS1.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
15 05 2020
Historique:
received: 19 03 2019
accepted: 13 04 2020
entrez: 17 5 2020
pubmed: 18 5 2020
medline: 13 8 2020
Statut: epublish

Résumé

A comprehensive examination of protein-protein interactions (PPIs) is fundamental for the understanding of cellular machineries. However, limitations in current methodologies often prevent the detection of PPIs with low abundance proteins. To overcome this challenge, we develop a mRNA display with library of even-distribution (md-LED) method that facilitates the detection of low abundance binders with high specificity and sensitivity. As a proof-of-principle, we apply md-LED to IAV NS1 protein. Complementary to AP-MS, md-LED enables us to validate previously described PPIs as well as to identify novel NS1 interactors. We show that interacting with FASN allows NS1 to directly regulate the synthesis of cellular fatty acids. We also use md-LED to identify a mutant of NS1, D92Y, results in a loss of interaction with CPSF1. The use of high-throughput sequencing as the readout for md-LED enables sensitive quantification of interactions, ultimately enabling massively parallel experimentation for the investigation of PPIs.

Identifiants

pubmed: 32415096
doi: 10.1038/s41467-020-16140-9
pii: 10.1038/s41467-020-16140-9
pmc: PMC7229031
doi:

Substances chimiques

INS1 protein, influenza virus 0
RNA, Messenger 0
Viral Nonstructural Proteins 0
Interferons 9008-11-1
FASN protein, human EC 2.3.1.85
Fatty Acid Synthase, Type I EC 2.3.1.85

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

2449

Subventions

Organisme : NCI NIH HHS
ID : P01 CA177322
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI135972
Pays : United States

Références

Tripathi, S. et al. Meta- and Orthogonal Integration of Influenza ‘oMICs’ Data Defines a Role for UBR4 in Virus Budding. Cell Host Microbe 18, 723–735 (2015).
pubmed: 26651948 pmcid: 4829074 doi: 10.1016/j.chom.2015.11.002
Watanabe, T. et al. Influenza virus-host interactome screen as a platform for antiviral drug development. Cell Host Microbe 16, 795–805 (2014).
pubmed: 25464832 pmcid: 4451456 doi: 10.1016/j.chom.2014.11.002
Brass, A. L. et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319, 921–926 (2008).
doi: 10.1126/science.1152725
König, R. & Stertz, S. Recent strategies and progress in identifying host factors involved in virus replication. Curr. Opin. Microbiol. 26, 79–88 (2015).
pubmed: 26112615 pmcid: 7185747 doi: 10.1016/j.mib.2015.06.001
Karlas, A. et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463, 818–822 (2010).
pubmed: 20081832 doi: 10.1038/nature08760
Gack, M. U. et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by RIG-I. Cell Host Microbe 5, 439–449 (2010).
doi: 10.1016/j.chom.2009.04.006
Shapira, S. D. et al. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139, 1255–1267 (2009).
pubmed: 20064372 pmcid: 2892837 doi: 10.1016/j.cell.2009.12.018
Lee, S. et al. An integrated approach to elucidate the intra-viral and viral-cellular protein interaction networks of a gamma-herpesvirus. PLoS Pathog. 7, e1002297 (2011).
pubmed: 22028648 pmcid: 3197595 doi: 10.1371/journal.ppat.1002297
König, R. et al. Human host factors required for influenza virus replication. Nature 463, 813–817 (2010).
pubmed: 20027183 pmcid: 2862546 doi: 10.1038/nature08699
Wang, L. et al. Comparative influenza protein interactomes identify the role of plakophilin 2 in virus restriction. Nat. Commun. 8, 1–12 (2017).
doi: 10.1038/s41467-016-0009-6
Levy, M. J., Washburn, M. P. & Florens, L. Probing the sensitivity of the orbitrap lumos mass spectrometer using a standard reference protein in a complex background. J. Proteome Res. 17, 3586–3592 (2018).
pubmed: 30180573 pmcid: 6836688 doi: 10.1021/acs.jproteome.8b00269
Joung, J. K., Ramm, E. I. & Pabo, C. O. A bacterial two-hybrid selection system for studying protein–DNA and protein–protein interactions. Proc. Natl Acad. Sci. USA 97, 7382–7387 (2000).
pubmed: 10852947 doi: 10.1073/pnas.110149297
Fields, S., Song, O. & Schnier, J. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).
doi: 10.1038/340245a0
Smith, G. P. & Petrenko, V. A. Phage display. Chem. Rev. 97, 391–410 (1997).
pubmed: 11848876 doi: 10.1021/cr960065d
Kim, S.-H. & Park, S.-Y. Selection and characterization of human antibodies against hepatitis B virus surface antigen (HBsAg) by phage-display. Hybrid. Hybridomics 21, 385–392 (2002).
pubmed: 12470482 doi: 10.1089/153685902761022742
Galán, A. et al. Library-based display technologies: where do we stand? Mol. BioSyst. 12, 2342–2358 (2016).
pubmed: 27306919 doi: 10.1039/C6MB00219F
Pepper, L. R., Cho, Y. K., Boder, E. T. & Shusta, E. V. A decade of yeast surface display technology: where are we now? Comb. Chem. High. Throughput Screen 11, 127–134 (2008).
pubmed: 18336206 pmcid: 2681324 doi: 10.2174/138620708783744516
Cherf, G. M. & Cochran, J. R. Applications of yeast surface display for protein engineering. in Yeast Surface Display 155–175 (Humana Press, New York, 2015).
Weaver-Feldhaus, J. M. et al. Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett. 564, 24–34 (2004).
pubmed: 15094038 doi: 10.1016/S0014-5793(04)00309-6
Manuscript, A. & Libraries, N. P. Ribosome display and related technologies (Humana Press, New York, 2012).
Schaffitzel, C., Hanes, J., Jermutus, L. & Plückthun, A. Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. J. Immunol. Methods 231, 119–135 (1999).
pubmed: 10648932 doi: 10.1016/S0022-1759(99)00149-0
Cujec, T. P., Medeiros, P. F., Hammond, P., Rise, C. & Kreider, B. L. Selection of v-abl tyrosine kinase substrate sequences from randomized peptide and cellular proteomic libraries using mRNA display. Chem. Biol. 9, 253–264 (2002).
pubmed: 11880040 doi: 10.1016/S1074-5521(02)00098-4
Wilson, D. S., Keefe, A. D. & Szostak, J. W. The use of mRNA display to select high-affinity protein-binding peptides. Proc. Natl Acad. Sci. USA 98, 3750–3755 (2001).
pubmed: 11274392 doi: 10.1073/pnas.061028198
Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).
pubmed: 4001944 doi: 10.1126/science.4001944
McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552 (1990).
pubmed: 2247164 doi: 10.1038/348552a0
Vega, N. M., Allison, K. R., Khalil, A. S. & Collins, J. J. Signaling-mediated bacterial persister formation. Nat. Chem. Biol. 8, 431–433 (2012).
pubmed: 3329571 pmcid: 3329571 doi: 10.1038/nchembio.915
Wang, H. & Liu, R. Advantages of mRNA display selections over other selection techniques for investigation of protein-protein interactions. Expert Rev. Proteom. 8, 335–346 (2011).
doi: 10.1586/epr.11.15
Huang, B. C. & Liu, R. Comparison of mRNA-display-based selections using synthetic peptide and natural protein libraries. Biochemistry 46, 10102–10112 (2007).
pubmed: 17685586 doi: 10.1021/bi700220x
Olson, C. A., Wu, N. C. & Sun, R. A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. Curr. Biol. 24, 2643–2651 (2014).
pubmed: 25455030 pmcid: 4254498 doi: 10.1016/j.cub.2014.09.072
Olson, C. A. et al. Rapid mRNA-Display Selection of an IL-6 Inhibitor Using Continuous-Flow Magnetic Separation. Angew. Chem. Int. Ed. 50, 8295–8298 (2011).
doi: 10.1002/anie.201101149
Olson, C. A. et al. Single-round, multiplexed antibody mimetic design through mRNA display. Angew. Chem. Int. Ed. 51, 12449–12453 (2012).
doi: 10.1002/anie.201207005
Shen, X. et al. Scanning the human proteome for calmodulin-binding proteins. Proc. Natl Acad. Sci. USA 102, 5969–5974 (2005).
pubmed: 15840729 doi: 10.1073/pnas.0407928102
Ju, W. et al. Proteome-wide identification of family member-specific natural substrate repertoire of caspases. Proc. Natl Acad. Sci. USA 104, 14294–14299 (2007).
pubmed: 17728405 doi: 10.1073/pnas.0702251104
Hale, B. G., Randall, R. E., Ortín, J. & Jackson, D. The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 89, 2359–2376 (2008).
pubmed: 18796704 doi: 10.1099/vir.0.2008/004606-0
Kochs, G., Garcia-Sastre, A. & Martinez-Sobrido, L. Multiple anti-interferon actions of the influenza A virus NS1 protein. J. Virol. 81, 7011–7021 (2007).
pubmed: 17442719 pmcid: 1933316 doi: 10.1128/JVI.02581-06
Das, K. et al. Structural basis for suppression of a host antiviral response by influenza A virus. Proc. Natl Acad. Sci. USA 105, 13093–13098 (2008).
pubmed: 18725644 doi: 10.1073/pnas.0805213105
Burgui, I., Aragón, T., Ortín, J. & Nieto, A. PABP1 and eIF4GI associate with influenza virus NS1 protein in viral mRNA translation initiation complexes. J. Gen. Virol. 84, 3263–3274 (2003).
pubmed: 14645908 doi: 10.1099/vir.0.19487-0
Dubois, J., Terrier, O. & Rosa-Calatrava, M. Influenza viruses and mRNA splicing: Doing more with less. MBio 5, 1–13 (2014).
doi: 10.1128/mBio.00070-14
Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).
pubmed: 27924014 pmcid: 27924014 doi: 10.1093/nar/gkw937
Davis, Z. H. et al. Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol. Cell 57, 349–360 (2015).
pubmed: 25544563 doi: 10.1016/j.molcel.2014.11.026
Batra, J. et al. Protein interaction mapping identifies RBBP6 as a negative regulator of Ebola virus replication article protein interaction mapping identifies RBBP6 as a negative regulator of Ebola virus replication. Cell 175, e13 (2018).
doi: 10.1016/j.cell.2018.08.044
Ruepp, A. et al. CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res. 36, 646–650 (2008).
doi: 10.1093/nar/gkm936
Ruepp, A. et al. CORUM: the comprehensive resource of mammalian protein complexes-2009. Nucleic Acids Res. 38, 497–501 (2009).
doi: 10.1093/nar/gkp914
Guirimand, T., Navratil, V. & Lyon, D. VirHostNet 2. 0: surfing on the web of virus/host. Nucleic Acids Res. 43, 583–587 (2015).
doi: 10.1093/nar/gku1121
Hultin-Rosenberg, L., Forshed, J., Branca, R. M. M., Lehtiö, J. & Johansson, H. J. Defining, comparing, and improving iTRAQ quantification in mass spectrometry proteomics data. Mol. Cell. Proteom. 12, 2021–2031 (2013).
doi: 10.1074/mcp.M112.021592
Tisoncik-go, J. et al. Integrated omics analysis of pathogenic host responses during pandemic H1N1 influenza virus infection: the crucial role of lipid metabolism resource integrated omics analysis of pathogenic host responses during pandemic H1N1 influenza virus infection: T. Cell Host Microbe 19, 254–266 (2016).
pubmed: 26867183 pmcid: 5271177 doi: 10.1016/j.chom.2016.01.002
Munger, J. et al. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat. Biotechnol. 26, 1179–1186 (2008).
pubmed: 18820684 pmcid: 2825756 doi: 10.1038/nbt.1500
Williams, K. J. et al. An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Res. 73, 2850–2862 (2013).
pubmed: 23440422 pmcid: 3919498 doi: 10.1158/0008-5472.CAN-13-0382-T
Ehrhardt, C. et al. Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. J. Virol. 81, 3058–3067 (2007).
pubmed: 17229704 pmcid: 1866065 doi: 10.1128/JVI.02082-06
Chen, G., Liu, C.-H., Zhou, L. & Krug, R. M. Cellular DDX21 RNA helicase inhibits influenza A virus replication but is counteracted by the viral NS1 protein. Cell Host Microbe 15, 484–493 (2014).
pubmed: 24721576 pmcid: 4039189 doi: 10.1016/j.chom.2014.03.002
Wu, N. C. et al. High-throughput identification of loss-of-function mutations for anti-interferon activity in the influenza A virus NS segment. J. Virol. 88, 10157–10164 (2014).
pubmed: 24965464 pmcid: 4136320 doi: 10.1128/JVI.01494-14
Letunic, I., Doerks, T. & Bork, P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43, D257–D260 (2015).
pubmed: 25300481 doi: 10.1093/nar/gku949
Letunic, I. & Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 1–4. https://doi.org/10.1093/nar/gkx922 (2017).
Dosztányi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434 (2005).
pubmed: 15955779 pmcid: 15955779 doi: 10.1093/bioinformatics/bti541
Dosztányi, Z., Csizmók, V., Tompa, P. & Simon, I. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J. Mol. Biol. 347, 827–839 (2005).
pubmed: 15769473 doi: 10.1016/j.jmb.2005.01.071
Yates, J. R. Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct. 33, 297–316 (2004).
pubmed: 15139815 doi: 10.1146/annurev.biophys.33.111502.082538
Zhang, Y., Fonslow, B. R., Shan, B., Baek, M. & Yates, J. R. Protein analysis by shotgun/bottom-up proteomics. https://doi.org/10.1021/cr3003533 (2013).
Miller, K. E. et al. Bimolecular fluorescence complementation(BiFC) analysis: advances and recent applications for genome-wide interaction studies. J. Mol. Biol. 427, 2039–2055 (2016).
doi: 10.1016/j.jmb.2015.03.005
Sung, M. K. et al. Genome-wide bimolecular fluorescence complementation analysis of SUMO interactome in yeast. Genome Res. 23, 736–746 (2013).
pubmed: 23403034 pmcid: 3613590 doi: 10.1101/gr.148346.112
Havugimana, P. C. et al. A census of human soluble protein complexes. Cell 150, 1068–1081 (2012).
pubmed: 22939629 pmcid: 3477804 doi: 10.1016/j.cell.2012.08.011
Shin, Y. et al. SH3 binding motif 1 in influenza A virus NS1 protein is essential for PI3K/Akt signaling pathway activation. J. Virol. 81, 12730–12739 (2007).
pubmed: 17881440 pmcid: 2169092 doi: 10.1128/JVI.01427-07
York, A. G. et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716–1729 (2015).
pubmed: 26686653 pmcid: 4783382 doi: 10.1016/j.cell.2015.11.045
Heaton, N. S. & Randall, G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422–432 (2010).
pubmed: 21075353 pmcid: 3026642 doi: 10.1016/j.chom.2010.10.006
Heaton, N. S. et al. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc. Natl Acad. Sci. USA 107, 17345–17350 (2010).
pubmed: 20855599 doi: 10.1073/pnas.1010811107
Nasheri, N. et al. Modulation of fatty acid synthase enzyme activity and expression during hepatitis C virus replication. Chem. Biol. 20, 570–582 (2013).
pubmed: 23601646 doi: 10.1016/j.chembiol.2013.03.014
Ichihara, K. & Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res.51, 635–640 (2010).
pubmed: 19759389 pmcid: 2817593 doi: 10.1194/jlr.D001065
Qi, H. et al. Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein. Proc. Natl Acad. Sci. USA 114, 3–8 (2018).
Lutz, A., Dyall, J., Olivo, P. D. & Pekosz, A. Virus-inducible reporter genes as a tool for detecting and quantifying influenza A virus replication. J. Virol. Methods 126, 13–20 (2005).
pubmed: 15847914 pmcid: 1698269 doi: 10.1016/j.jviromet.2005.01.016

Auteurs

Yushen Du (Y)

Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA. lilyduyushen@g.ucla.edu.
Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, School of Medicine, Zhejiang University, Hangzhou, 310058, China. lilyduyushen@g.ucla.edu.

Judd F Hultquist (JF)

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.
California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA, 94158, USA.
J. David Gladstone Institutes, San Francisco, CA, 94158, USA.
Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.

Quan Zhou (Q)

Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.

Anders Olson (A)

Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.

Yenwen Tseng (Y)

Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.

Tian-Hao Zhang (TH)

Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.

Mengying Hong (M)

Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, School of Medicine, Zhejiang University, Hangzhou, 310058, China.

Kejun Tang (K)

Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, School of Medicine, Zhejiang University, Hangzhou, 310058, China.

Liubo Chen (L)

Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, School of Medicine, Zhejiang University, Hangzhou, 310058, China.

Xiangzhi Meng (X)

Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.

Michael J McGregor (MJ)

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.
California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA, 94158, USA.
J. David Gladstone Institutes, San Francisco, CA, 94158, USA.

Lei Dai (L)

Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.

Danyang Gong (D)

Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.

Laura Martin-Sancho (L)

Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.

Sumit Chanda (S)

Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.

Xinming Li (X)

Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, L, Los Angeles, CA, 90095, USA.

Steve Bensenger (S)

Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.

Nevan J Krogan (NJ)

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.
California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA, 94158, USA.
J. David Gladstone Institutes, San Francisco, CA, 94158, USA.

Ren Sun (R)

Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA. rsun@mednet.ucla.edu.
Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA. rsun@mednet.ucla.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH