Mitigation of Arctic permafrost carbon loss through stratospheric aerosol geoengineering.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
15 May 2020
Historique:
received: 20 09 2019
accepted: 28 04 2020
entrez: 17 5 2020
pubmed: 18 5 2020
medline: 18 5 2020
Statut: epublish

Résumé

The Arctic is warming far faster than the global average, threatening the release of large amounts of carbon presently stored in frozen permafrost soils. Increasing Earth's albedo by the injection of sulfate aerosols into the stratosphere has been proposed as a way of offsetting some of the adverse effects of climate change. We examine this hypothesis in respect of permafrost carbon-climate feedbacks using the PInc-PanTher process model driven by seven earth system models running the Geoengineering Model Intercomparison Project (GeoMIP) G4 stratospheric aerosol injection scheme to reduce radiative forcing under the Representative Concentration Pathway (RCP) 4.5 scenario. Permafrost carbon released as CO

Identifiants

pubmed: 32415126
doi: 10.1038/s41467-020-16357-8
pii: 10.1038/s41467-020-16357-8
pmc: PMC7229154
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2430

Références

Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A. & Brown, J. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr. 23, 132–154 (2008).
doi: 10.1080/10889379909377670
Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
pubmed: 25855454 doi: 10.1038/nature14338
Zimov, S. A., Schuur, E. A. G. & Stuart Chapin, F. Permafrost and the global carbon budget. Science 312, 1612–1613 (2006).
pubmed: 16778046 doi: 10.1126/science.1128908
Huang, J. et al. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Chang. 7, 875–879 (2017).
doi: 10.1038/s41558-017-0009-5
Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Chang. 7, 817–822 (2017).
doi: 10.1038/nclimate3421
MacDougall, A. H., Avis, C. A. & Weaver, A. J. Significant contribution to climate warming from the permafrost carbon feedback. Nat. Geosci. 5, 719–721 (2012).
doi: 10.1038/ngeo1573
Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Chang. 7, 340–344 (2017).
doi: 10.1038/nclimate3262
Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback. Philos. Trans. A Math. Phys. Eng. Sci. 373, 20140423 (2015).
pubmed: 26438276 pmcid: 4608038 doi: 10.1098/rsta.2014.0423
McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).
pubmed: 29581283 doi: 10.1073/pnas.1719903115
Shepherd, J. G. Geoengineering the Climate: Science, Governance and Uncertainty. (The Royal Society, London, 2009).
Pidgeon, N., Parkhill, K., Corner, A. & Vaughan, N. Deliberating stratospheric aerosols for climate geoengineering and the SPICE project. Nat. Clim. Chang 3, 451–457 (2013).
doi: 10.1038/nclimate1807
Pope, F. D. et al. Stratospheric aerosol particles and solar-radiation management. Nat. Clim. Chang. 2, 713–719 (2012).
doi: 10.1038/nclimate1528
Xia, L., Robock, A., Tilmes, S. & Neely, R. R. Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate. Atmos. Chem. Phys. 16, 1479–1489 (2016).
Lee, H. et al. The response of permafrost and high-latitude ecosystems under large-scale stratospheric aerosol injection and its termination. Earth’s Futur 7, 605–614 (2019).
doi: 10.1029/2018EF001146
Moore, J. C., Jevrejeva, S. & Grinsted, A. Efficacy of geoengineering to limit 21st century sea-level rise. Proc. Natl Acad. Sci. USA 107, 15699–15703 (2010).
pubmed: 20798055 doi: 10.1073/pnas.1008153107
Moore, J. C. et al. Atlantic hurricane surge response to geoengineering. Proc. Natl Acad. Sci. USA 112, 13794–13799 (2015).
pubmed: 26504210 doi: 10.1073/pnas.1510530112
Robock, A. 20 reasons why geoengineering may be a bad idea. Bull. Sci. 64, 14–18 (2008).
Gunderson, R., Stuart, D. & Petersen, B. The political economy of geoengineering as plan b: technological rationality, moral hazard, and new technology. N. Polit. Econ. 24, 696–715 (2019).
doi: 10.1080/13563467.2018.1501356
Kitous, A. & Keramidas, K. Analysis of scenarios integrating the INDCs (Joint Research Centre, Sevilla, Spain, 2015).
McClellan, J., Keith, D. W. & Apt, J. Cost analysis of stratospheric albedo modification delivery systems. Environ. Res. Lett. 7, 034019 (2012).
doi: 10.1088/1748-9326/7/3/034019
Niemeier, U. & Timmreck, C. What is the limit of climate engineering by stratospheric injection of SO2? Atmos. Chem. Phys. 15, 9129–9141 (2015).
doi: 10.5194/acp-15-9129-2015
Kravitz, B. et al. The Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Sci. Lett. 12, 162–167 (2011).
doi: 10.1002/asl.316
Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).
doi: 10.5194/bg-10-1717-2013
Ji, D. et al. Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model Dev. 7, 2039–2064 (2014).
Chylek, P., Li, J., Dubey, M. K., Wang, M. & Lesins, G. Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmos. Chem. Phys. Discuss 11, 22893–22907 (2011).
doi: 10.5194/acpd-11-22893-2011
Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).
doi: 10.5194/gmd-4-543-2011
Schmidt, G. A. et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst. 6, 141–184 (2014).
doi: 10.1002/2013MS000265
Watanabe, S. et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845 (2011).
doi: 10.5194/gmd-4-845-2011
Watanabe, S. et al. Future projections of surface UV-B in a changing climate. J. Geophys. Res. Atmos. 116, D16 (2011).
Knudsen, E. M. & Walsh, J. E. Northern Hemisphere storminess in the Norwegian Earth System Model (NorESM1-M). Geosci. Model Dev. 9, 2335–2355 (2016).
doi: 10.5194/gmd-9-2335-2016
Burke, E. J., Jones, C. D. & Koven, C. D. Estimating the permafrost-carbon climate response in the CMIP5 climate models using a simplified approach. J. Clim. 26, 4897–4909 (2013).
doi: 10.1175/JCLI-D-12-00550.1
Kravitz, B. et al. A multi-model assessment of regional climate disparities caused by solar geoengineering. Environ. Res. Lett. 9, 074013 (2014).
doi: 10.1088/1748-9326/9/7/074013
Guo, A., Moore, J. C. & Ji, D. Tropical atmospheric circulation response to the G1 sunshade geoengineering radiative forcing experiment. Atmos. Chem. Phys. 18, 8689–8706 (2018).
doi: 10.5194/acp-18-8689-2018
Hong, Y. et al. Impact of the GeoMIP G1 sunshade geoengineering experiment on the Atlantic meridional overturning circulation. Environ. Res. Lett. 12, 034009 (2017).
doi: 10.1088/1748-9326/aa5fb8
Fasullo, J. T. et al. Persistent polar ocean warming in a strategically geoengineered climate. Nat. Geosci. 11, 910–914 (2018).
doi: 10.1038/s41561-018-0249-7
Moore, J. C., Yue, C., Zhao, L., Guo, X., Watanabe, S. & Ji, D. Greenland Ice Sheet Response to Stratospheric Aerosol Injection Geoengineering. Earth’s Future 7, 1451–1463 (2019).
doi: 10.1029/2019EF001393
Christensen, T. R. Climate science: Understand Arctic methane variability. Nature 509, 279 (2014).
Treat, C. C. et al. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Glob. Chang. Biol. 21, 2787–2803 (2015).
pubmed: 25620695 doi: 10.1111/gcb.12875
Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11 6573–6593 (2014).
Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change 119, 359–374 (2013).
doi: 10.1007/s10584-013-0730-7
Schadel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Chang. 6, 950–953 (2016).
doi: 10.1038/nclimate3054
Kessler, L. Estimating the economic impact of the permafrost carbon feedback. Clim. Chang. Econ. 8, 1750008 (2017).
doi: 10.1142/S2010007817500087
Macias-Faurier, M. et al. Pleistocene arctic megafaunal ecological engineering as a natural climate solution? Philos. Trans. R. Soc. B 375, 20190122 (2020).
doi: 10.1098/rstb.2019.0122
Gasser, T. et al. Path-dependent reductions in CO
doi: 10.1038/s41561-018-0227-0
Schneider Von Deimling, T. et al. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences 12, 3469–3488 (2015).
doi: 10.5194/bg-12-3469-2015
Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).
doi: 10.1038/ngeo1955
Ji, D. et al. Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering. Atmos. Chem. Phys. 18, PNNL-SA-132309 (2018).
Block, K., Schneider, F. A., Mülmenstädt, J., Salzmann, M. & Quaas, J. Climate models disagree on the sign of total radiative feedback in the Arctic. Tellus, Ser. A Dyn. Meteorol. Oceanogr. 72, 1–14 (2020).
doi: 10.1080/16000870.2019.1696139
Nicolsky, D. J., Romanovsky, V. E., Alexeev, V. A. & Lawrence, D. M. Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophys. Res. Lett. 34, L08501 (2007).
doi: 10.1029/2007GL029525
Wang, W. et al. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area. Cryosphere. 10 1769–1810 (2016).
Park, H., Fedorov, A. N., Zheleznyak, M. N., Konstantinov, P. Y. & Walsh, J. E. Effect of snow cover on pan-Arctic permafrost thermal regimes. Clim. Dyn. 44, 2873–2895 (2015).
doi: 10.1007/s00382-014-2356-5
Marchenko, S. & Etzelmüller, B. in Treatise on Geomorphology (Academic Press: San Diego, 2013).
Wang, W. et al. Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region. Cryosphere. 10, 1737–1721 (2016).
Dutra, E., Viterbo, P., Miranda, P. M. A. & Balsamo, G. Complexity of snow schemes in a climate model and its impact on surface energy and hydrology. J. Hydrometeorol. 13, 521–538 (2012).
doi: 10.1175/JHM-D-11-072.1
Kashimura, H. et al. Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: Analysis of the Geoengineering Model Intercomparison Project G4 scenario. Atmos. Chem. Phys. 17, PNNL-SA-118834 (2017).
doi: 10.5194/acp-17-3339-2017
Pitari, G. et al. Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. 119, 2629–2653 (2014).
Rasch, P. J., Crutzen, P. J. & Coleman, D. B. Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size. Geophys. Res. Lett. 35, L02809 (2008).
Jones, A. et al. The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 118, 9743–9752 (2013).
doi: 10.1002/jgrd.50762
Parker, A. & Irvine, P. J. The risk of termination shock from solar geoengineering. Earth’s Futur 6, 456–467 (2018).
doi: 10.1002/2017EF000735
Goodwin, P. et al. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).
doi: 10.1038/s41561-017-0054-8
Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J. & Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 571, 335–342 (2019).
pubmed: 31316194 doi: 10.1038/s41586-019-1368-z
Comyn-Platt, E. et al. Carbon budgets for 1.5 and 2°C targets lowered by natural wetland and permafrost feedbacks. Nat. Geosci. 11, 568–573 (2018).
doi: 10.1038/s41561-018-0174-9
Myhre, G. et al. Chapter 8: Anthropogenic and Natural Radiative Forcing. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge and New York, 2013).
Hope, C. & Schaefer, K. Economic impacts of carbon dioxide and methane released from thawing permafrost. Nat. Clim. Chang. 6, 56–59 (2016).
doi: 10.1038/nclimate2807
Yumashev, D. et al. Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nat. Commun. 10, 1–11 (2019).
doi: 10.1038/s41467-019-09863-x
Bickel, J. E. & Agrawal, S. Reexamining the economics of aerosol geoengineering. Clim. Chang. 119, 993–1006 (2013).
doi: 10.1007/s10584-012-0619-x
Harding, A. R. et al. Climate econometric models indicate solar geoengineering would reduce inter-country income inequality. Nat. Commun. 11, 1–9 (2020).
doi: 10.1038/s41467-019-13957-x
Jackson, L. S. et al. Assessing the controllability of Arctic sea ice extent by sulfate aerosol geoengineering. Geophys. Res. Lett. 42, 1223–1231 (2015).
doi: 10.1002/2014GL062240
Shakhova, N. et al. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Philos. Trans. A Math. Phys. Eng. Sci. 373, 20140451 (2015).
pubmed: 26347539 pmcid: 4607703 doi: 10.1098/rsta.2014.0451
Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 1–11 (2016).
doi: 10.1038/ncomms13043
Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704 (2012).
doi: 10.1029/2012GL051958
Schädel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Change Biol. 20, 641–652 (2014).
doi: 10.1111/gcb.12417
Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9, 852–857 (2019).
doi: 10.1038/s41558-019-0592-8
Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction - The ISI-MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).
doi: 10.5194/esd-4-219-2013
Sherstyukov, A. B. Daily Data Set of Soil Temperature at Depths to 320 cm from Meteorological Stations of the Russian Federation. RIHMI‐WDC, Roshydromet, Obninsk. http://meteo.ru/english/climate/soil.php. (2015).
Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home (2017).
Running, S. W., Nemani, R., Glassy, J. M. & Thornton, P. E. MODIS Daily Photosynthesis (PSN) and Annual Net Primary Production (NPP) Product (MOD17) Algorithm Theoretical Basis Document. University of Montana, SCF At-Launch Algorithm ATBD Documents. www.ntsg.umt.edu/files/modis/ATBD/ATBD_MOD17_v21.pdf (1999).
Council Domestic Policy. Technical Support Document:-Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis-Under Executive Order 12866 (Environmental Protection Agency, 2013).
Moore, F. C. et al. Mimi-PAGE, an open-source implementation of the PAGE09 integrated assessment model. Sci. Data 5, 180187 (2018).
pubmed: 30251994 pmcid: 6154285 doi: 10.1038/sdata.2018.187
Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).
pubmed: 26503051 doi: 10.1038/nature15725
Anthoff, D., Hepburn, C. & Tol, R. S. J. Equity weighting and the marginal damage costs of climate change. Ecol. Econ. 68, 836–849 (2009).
doi: 10.1016/j.ecolecon.2008.06.017

Auteurs

Yating Chen (Y)

College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China.

Aobo Liu (A)

College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China.

John C Moore (JC)

College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China. john.moore.bnu@gmail.com.
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China. john.moore.bnu@gmail.com.
Arctic Centre, University of Lapland, Rovaniemi, Finland. john.moore.bnu@gmail.com.

Classifications MeSH