Tuning Penta-Graphene Electronic Properties Through Engineered Line Defects.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
15 May 2020
Historique:
received: 02 03 2020
accepted: 09 04 2020
entrez: 17 5 2020
pubmed: 18 5 2020
medline: 18 5 2020
Statut: epublish

Résumé

Penta-graphene is a quasi-two-dimensional carbon allotrope consisting of a pentagonal lattice in which both sp

Identifiants

pubmed: 32415176
doi: 10.1038/s41598-020-64791-x
pii: 10.1038/s41598-020-64791-x
pmc: PMC7229116
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8014

Références

Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669, https://doi.org/10.1126/science.1102896 (2004).
doi: 10.1126/science.1102896 pubmed: 15499015
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Materials 6, 183–191, https://doi.org/10.1038/nmat1849 (2007).
doi: 10.1038/nmat1849 pubmed: 17330084
Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Reviews of modern physics 81, 109 (2009).
doi: 10.1103/RevModPhys.81.109
Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano letters 8, 902–907 (2008).
doi: 10.1021/nl0731872
Ilyasov, V. V., Meshil, B. C., Nguyen, V. C., Ershov, I. V. & Nguyen, D. C. Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field. J. Chem. Phy. 114, 014708, https://doi.org/10.1063/1.4885857 (2014).
doi: 10.1063/1.4885857
Shahrokhi, M. & Leonard, C. Tuning the band gap and optical spectra of silicon-doped graphene: Many-body effects and excitonic states. Journal of Alloys and Compounds 693, 1185–1196, https://doi.org/10.1016/j.jallcom.2016.10.101 (2017).
doi: 10.1016/j.jallcom.2016.10.101
Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature 557, 404–408, https://doi.org/10.1038/s41586-018-0107-1 (2018).
doi: 10.1038/s41586-018-0107-1 pubmed: 29769674
Son, Y.-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Physical review letters 97, 216803 (2006).
doi: 10.1103/PhysRevLett.97.216803
Zhou, Q., Yong, Y., Ju, W., Su, X. & Li, X. Dft study of the electronic structure and magnetism of defective graphene decorated with hydrogen-adatom. Physica E: Low-dimensional Systems and Nanostructures 91, 65–71 (2017).
doi: 10.1016/j.physe.2017.04.009
Denis, P. A. Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chemical Physics Letters 492, 251–257, https://doi.org/10.1016/j.cplett.2010.04.038 (2010).
doi: 10.1016/j.cplett.2010.04.038
Houmad, M., Zaari, H., Benyoussef, A., Kenz, A. E. & Ez-Zahraouy, H. Optical conductivity enhancement and band gap opening with silicon doped graphene. Carbon 94, 1021–1027, https://doi.org/10.1016/j.carbon.2015.07.033 (2015).
doi: 10.1016/j.carbon.2015.07.033
Rani, P. & Jindal, V. K. Study of b and n doped graphene by varying dopant positions. AIP Conference Proceedings 1512, 262–263, https://doi.org/10.1063/1.4791011 (2013).
doi: 10.1063/1.4791011
Zhou, Q., Ju, W., Yong, Y. & Li, X. Electronic and magnetic properties of 3d transition-metal atom adsorbed vacancy-defected arsenene: A first-principles study. Journal of Magnetism and Magnetic Materials 491, 165613 (2019).
doi: 10.1016/j.jmmm.2019.165613
Liu, Y., Zhou, Q., Ju, W., Li, J. & Liu, Y. Influence of the vacancy-defect and transition-metal doping in arsenene: A first-principles study. Superlattices and Microstructures 132, 106163 (2019).
doi: 10.1016/j.spmi.2019.106163
Oh, J. S., Kim, K. N. & Yeom, G. Y. Graphene doping methods and device applications. Journal of nanoscience and nanotechnology 14, 1120–1133 (2014).
doi: 10.1166/jnn.2014.9118
Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162 (1985).
doi: 10.1038/318162a0
Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. nature 363, 603 (1993).
doi: 10.1038/363603a0
Zhang, S., Zhou, J., Wang, Q., Kawazoe, Y. & Jena, P. Heterostructures based on two-dimensional layered materials and their potential applications. Proceedings of the National Academy of Sciences 112, 2372–2377 (2015).
doi: 10.1073/pnas.1416591112
Zhang, S. et al. Penta-graphene: A new carbon allotrope. Proceedings of the National Academy of Sciences 112, 2372–2377, https://doi.org/10.1073/pnas.1416591112 (2015).
doi: 10.1073/pnas.1416591112
Cranford, S. W. When is 6 less than 5? penta-to hexa-graphene transition. Carbon 96, 421–428 (2016).
doi: 10.1016/j.carbon.2015.09.092
Rajbanshi, B., Sarkar, S., Mandal, B. & Sarkar, P. Energetic and electronic structure of penta-graphene nanoribbons. Carbon 100, 118–125 (2016).
doi: 10.1016/j.carbon.2016.01.014
Ewels, C. P. et al. Predicting experimentally stable allotropes: Instability of penta-graphene. Proceedings of the National Academy of Sciences 112, 15609–15612 (2015).
doi: 10.1073/pnas.1520402112
Einollahzadeh, H., Fazeli, S. M. & Dariani, R. S. Studying the electronic and phononic structure of penta-graphane. Science and Technology of advanced MaTerialS 17, 610–617 (2016).
doi: 10.1080/14686996.2016.1219970
Zhao, J. & Zeng, H. Chemical functionalization of pentagermanene leads to stabilization and tunable electronic properties by external tensile strain. ACS Omega 2, 171–180, https://doi.org/10.1021/acsomega.6b00439 (2017).
doi: 10.1021/acsomega.6b00439 pubmed: 31457219 pmcid: 6641035
Jeong, H. M. et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano letters 11, 2472–2477 (2011).
doi: 10.1021/nl2009058
Lv, R. et al. Large-area si-doped graphene: controllable synthesis and enhanced molecular sensing. Advanced Materials 26, 7593–7599 (2014).
doi: 10.1002/adma.201403537
Koput, J. Ab initio potential energy surface and vibration-rotation energy levels of disilicon carbide, csi2. Journal of Molecular Spectroscopy 342, 83–91 (2017).
doi: 10.1016/j.jms.2017.06.003
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868, https://doi.org/10.1103/PhysRevLett.77.3865 (1996).
doi: 10.1103/PhysRevLett.77.3865 pubmed: 10062328
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871, https://doi.org/10.1103/PhysRev.136.B864 (1964).
doi: 10.1103/PhysRev.136.B864
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138, https://doi.org/10.1103/PhysRev.140.A1133 (1965).
doi: 10.1103/PhysRev.140.A1133
Kleinman, L. & Bylander, D. M. Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425, https://doi.org/10.1103/PhysRevLett.48.1425 (1982).
doi: 10.1103/PhysRevLett.48.1425
Monkhorst, H. J. & Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188, https://doi.org/10.1103/PhysRevB.13.5188 (1976).
doi: 10.1103/PhysRevB.13.5188
Anglada, E., M. Soler, J., Junquera, J. & Artacho, E. Systematic generation of finite-range atomic basis sets for linear-scaling calculations. Phys. Rev. B 66, 205101, https://doi.org/10.1103/PhysRevB.66.205101 (2002).
doi: 10.1103/PhysRevB.66.205101
Ordejón, P., Artacho, E. & Soler, J. M. Self-consistent ujm order-n density-functional calculations for very large systems. Phys. Rev. B 53, 10441, https://doi.org/10.1103/PhysRevB.53.R10441 (1996).
doi: 10.1103/PhysRevB.53.R10441
Sánchez-Portal, D., Artacho, E. &Soler, J. M. Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 65, 453 10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V (1997).
Liu, Z. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature nanotechnology 8, 119 (2013).
doi: 10.1038/nnano.2012.256

Auteurs

Ramiro Marcelo Dos Santos (RMD)

Institute of Physics, University of Brasília, 70.919-970, Brasília, Brazil. ribeirojr@unb.br.

Leonardo Evaristo de Sousa (LE)

Theoretical and Structural Chemistry Group, State University of Goias, 75133-050, Anapolis, Brazil.

Douglas Soares Galvão (DS)

Applied Physics Department, State University of Campinas, Campinas, SP, 13083-959, Brazil.

Luiz Antonio Ribeiro (LA)

Institute of Physics, University of Brasília, 70.919-970, Brasília, Brazil.

Classifications MeSH