Pollinator divergence and pollination isolation between hybrids with different floral color and morphology in two sympatric Penstemon species.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 05 2020
15 05 2020
Historique:
received:
19
12
2019
accepted:
27
04
2020
entrez:
17
5
2020
pubmed:
18
5
2020
medline:
1
12
2020
Statut:
epublish
Résumé
Differential visitation of pollinators due to divergent floral traits can lead to reproductive isolation via assortative pollen flow, which may ultimately be a driving force in plant speciation, particularly in areas of overlap. We evaluate the effects of pollinator behavioral responses to variation of intraspecific floral color and nectar rewards, on reproductive isolation between two hybrid flower color morphs (fuchsia and blue) and their parental species Penstemon roseus and P. gentianoides with a mixed-pollination system. We show that pollinators (bumblebees and hummingbirds) exhibit different behavioral responses to fuchsia and blue morphs, which could result from differential attraction or deterrence. In addition to differences in color (spectral reflectance), we found that plants with fuchsia flowers produced more and larger flowers, produced more nectar and were more visited by pollinators than those with blue flowers. These differences influenced the foraging behavior and effectiveness as pollinators of both bumblebees and hummingbirds, which contributed to reproductive isolation between the two hybrid flower color morphs and parental species. This study demonstrates how differentiation of pollination traits promotes the formation of hybrid zones leading to pollinator shifts and reproductive isolation. While phenotypic traits of fuchsia and red flowers might encourage more efficient hummingbird pollination in a mixed-pollination system, the costs of bumblebee pollination on plant reproduction could be the drivers for the repeated shifts from bumblebee- to hummingbird-mediated pollination.
Identifiants
pubmed: 32415216
doi: 10.1038/s41598-020-64964-8
pii: 10.1038/s41598-020-64964-8
pmc: PMC7229217
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8126Références
Raven, P. H. Why are bird-visited flowers predominantly red? Evolution 26, 674, https://doi.org/10.1111/j.1558-5646.1972.tb01975.x (1972).
doi: 10.1111/j.1558-5646.1972.tb01975.x
pubmed: 28563347
Thomson, J. D. & Wilson, P. Explaining evolutionary shifts between bee and hummingbird pollination: convergence, divergence, and directionality. Int J Pl Sci 169, 23–38, https://doi.org/10.1086/523361 (2008).
doi: 10.1086/523361
Abrahamczyk, S. & Renner, S. S. The temporal build-up of hummingbird/plant mutualisms in North America and temperate South America. BMC Evol Biol 15, e104, https://doi.org/10.1186/s12862-015-0388-z (2015).
doi: 10.1186/s12862-015-0388-z
Bradshaw, H. D. & Schemske, D. W. Allele substitution at a flower color locus produces a pollinator shift in monkeyflowers. Nature 426, 176–178, https://doi.org/10.1038/nature02106 (2003).
doi: 10.1038/nature02106
pubmed: 14614505
Castellanos, M. C., Wilson, P., Keller, S. J., Wolfe, A. D. & Thomson, J. D. Anther evolution: pollen presentation strategies when pollinators differ. Am Nat 167, 288–296, https://doi.org/10.1086/498854 (2006).
doi: 10.1086/498854
pubmed: 16670987
Kay, K. M. & Sargent, R. D. The role of animal pollination in plant speciation: integrating ecology, geography, and genetics. Ann Rev Ecol Evol Syst 40, 637–656, https://doi.org/10.1146/annurev.ecolsys.110308.120310 (2009).
doi: 10.1146/annurev.ecolsys.110308.120310
Wessinger, C. A. & Kelly, J. K. Selfing can facilitate transitions between pollination syndromes. Am Nat 191, 582–594, https://doi.org/10.1086/696856 (2018).
doi: 10.1086/696856
pubmed: 29693439
Pascarella, J. B. Mechanisms of prezygotic reproductive isolation between two sympatric species, Gelsemium rankinii and G. sempervirens (Gelsemiaceae), in the southeastern United States. Amer J Bot 94, 468–476, https://doi.org/10.3732/ajb.94.3.468 (2007).
doi: 10.3732/ajb.94.3.468
Yang, C. F., Gituru, R. W. & Guo, Y. H. Reproductive isolation of two sympatric louseworts, Pedicularis rhinanthoides and Pedicularis longiflora (Orobanchaceae): how does the same pollinator type avoid interspecific pollen transfer? Biol J Linn Soc 90, 37–48, https://doi.org/10.1111/j.1095-8312.2007.00709.x (2007).
doi: 10.1111/j.1095-8312.2007.00709.x
Waelti, M. O., Muhlemann, J. K., Widmer, A. & Schiestl, F. P. Floral odour and reproductive isolation in two species of Silene. J Evol Biol 21, 111–121, https://doi.org/10.1111/j.1420-9101.2007.01461.x (2008).
doi: 10.1111/j.1420-9101.2007.01461.x
pubmed: 18031491
Schmidt-Lebuhn, A. N., Kessler, M. & Hensen, I. Hummingbirds as drivers of plant speciation? Trends Pl Sci 12, 329–331, https://doi.org/10.1016/j.tplants.2007.06.009 (2007).
doi: 10.1016/j.tplants.2007.06.009
Tripp, E. A. & Manos, P. S. Is floral specialization and evolutionary dead-end? Pollination system transitions in Ruellia (Acanthaceae). Evolution 62, 1712–1737, https://doi.org/10.1111/j.1558-5646.2008.00398.x (2008).
doi: 10.1111/j.1558-5646.2008.00398.x
pubmed: 18410536
Smith, S. D. Using phylogenetics to detect pollinator-mediated floral evolution. New Phytol 188, 354–363, https://doi.org/10.1111/j.1469-8137.2010.03292.x (2010).
doi: 10.1111/j.1469-8137.2010.03292.x
pmcid: 3111064
Lagomarsino, L. P., Forrestel, E. J., Muchhala, N. & Davis, C. C. Repeated evolution of vertebrate pollination syndromes in a recently diverged Andean plant clade. Evolution 71, 1970–1985, https://doi.org/10.1111/evo.13297 (2017).
doi: 10.1111/evo.13297
pubmed: 28640437
Joly, S. et al. Greater pollination generalization is not associated with reduced constraints on corolla shape in Antillean plants. Evolution 72, 244–260, https://doi.org/10.1111/evo.13410 (2018).
doi: 10.1111/evo.13410
pubmed: 29235117
Kriebel, R. et al. Tracking temporal shifts in area, biomes, and pollinators in the radiation of Salvia (sages) across continents: leveraging anchored hybrid enrichment and targeted sequence data. Amer J Bot 106, 573–597, https://doi.org/10.1002/ajb2.1268 (2019).
doi: 10.1002/ajb2.1268
Wilson, P. P., Wolfe, A. D., Armbruster, S. W. & Thomson, D. J. Constrained lability in floral evolution: counting convergent origins of hummingbird pollination in Penstemon and Keckiella. New Phytol 176, 883–890, https://doi.org/10.1111/j.1469-8137.2007.02219.x (2007).
doi: 10.1111/j.1469-8137.2007.02219.x
pubmed: 17897322
Katzer, A. M., Wessinger, C. A. & Hileman, L. C. Nectary size is a pollination syndrome trait in Penstemon. New Phytol 223, 377–384, https://doi.org/10.1111/nph.15769 (2019).
doi: 10.1111/nph.15769
pubmed: 30834532
pmcid: 6593460
Shrestha, M., Dyer, A. G. & Burd, M. Evaluating the spectral discrimination capabilities of different pollinators and their effect on the evolution of flower colors. Comm Integr Biol 6, e24000, https://doi.org/10.4161/cib.24000 (2013a).
doi: 10.4161/cib.24000
Shrestha, M., Dyer, A. G., Boyd-Gerny, S., Wong, B. B. M. & Burd, M. Shades of red: bird-pollinated flowers target the specific color discrimination abilities of avian vision. New Phytol 198, 301–310, https://doi.org/10.1111/nph.12135 (2013b).
doi: 10.1111/nph.12135
pubmed: 23368754
Bergamo, P. J., Rech, A. R., Brito, V. L. G. & Sazima, M. Flower color and visitation rates of Costus arabicus support the ‘bee avoidance’ hypothesis for red-reflecting hummingbird-pollinated flowers. Funct Ecol 30, 710–720, https://doi.org/10.1111/1365-2435.12537 (2016).
doi: 10.1111/1365-2435.12537
Gutierrez de Camargo, M. G., Lunau, K., Batalha, M. A., Garcia de Brito, V. L. & Cerdeira Morellato, L. P. How flower color signals allure bees and hummingbirds: a community-level test of the bee avoidance hypothesis. New Phytol 222, 1112–1122, https://doi.org/10.1111/nph.15594 (2019).
doi: 10.1111/nph.15594
Briscoe, A. D. & Chittka, L. The evolution of color vision in insects. Ann Rev Entomol 46, 471–510, https://doi.org/10.1146/annurev.ento.46.1.471 (2001).
doi: 10.1146/annurev.ento.46.1.471
Kelber, A., Vorobyev, M. & Osorio, D. Animal color vision—behavioral tests and physiological concepts. Biol Rev 78, 81–118, https://doi.org/10.1017/S1464793102005985 (2003).
doi: 10.1017/S1464793102005985
pubmed: 12620062
Hart, N. S. & Hunt, D. M. Avian visual pigments: characteristics, spectral tuning, and evolution. Am Nat 169, S7–S26, https://doi.org/10.1086/510141 (2007).
doi: 10.1086/510141
pubmed: 19426092
Bergamo, P. J. et al. Bracts and long-tube flowers of hummingbird-pollinated plants are conspicuous to hummingbirds but not to bees. Biol J Linn Soc 126, 533–544, https://doi.org/10.1093/biolinnean/bly217 (2019).
doi: 10.1093/biolinnean/bly217
van der Kooi, C. J., Dyer, A. G., Kevan, P. G. & Lunau, K. Functional significance of the optical properties of flowers for visual signaling. Ann Bot 123, 263–276, https://doi.org/10.1098/rspb.2016.0429 (2019).
doi: 10.1098/rspb.2016.0429
pubmed: 29982325
Kevan, P. G., Chittka, L. & Dyer, A. G. Limits to the salience of ultraviolet: lessons from color vision in bees and birds. J Exp Biol 204, 2571–2580.
Cuthill, I. C. et al. Ultraviolet vision in birds. Adv Stud Behav 29, 159–214, https://doi.org/10.1016/S0065-3454(08)60105-9 (2000).
doi: 10.1016/S0065-3454(08)60105-9
Rodríguez-Gironés, M. A. & Santamaría, L. Why are so many bird flowers red? PLoS Biol 2, e350, https://doi.org/10.1371/journal.pbio.0020350 (2004).
doi: 10.1371/journal.pbio.0020350
pubmed: 15486585
pmcid: 521733
Campbell, D. R., Waser, N. M. & Pederson, G. T. Predicting patterns of mating and potential hybridization from pollinator behavior. Am Nat 159, 438–450, https://doi.org/10.1086/339457 (2002).
doi: 10.1086/339457
pubmed: 18707428
Campbell, D. R. Natural selection in Ipomopsis hybrid zones: implications for ecological speciation. New Phytol 161, 83–90, https://doi.org/10.1046/j.1469-8137.2003.00919.x (2003).
doi: 10.1046/j.1469-8137.2003.00919.x
Campbell, D. R. D. R. & Waser, N. M. Evolutionary dynamics of an Ipomopsis hybrid zone: confronting models with lifetime fitness data. Am Nat 169, 298–310, https://doi.org/10.1086/510758 (2007).
doi: 10.1086/510758
pubmed: 17252512
Sargent, R. D. & Otto, S. P. The role of local species abundance in the evolution of pollinator attraction in flowering plants. Am Nat 167, 67–80, https://doi.org/10.1086/498433 (2005).
doi: 10.1086/498433
pubmed: 16475100
Wilson, P., Castellanos, M. C., Hogue, J. A., Thomson, D. J. & Armbruster, W. S. A multivariate search for pollination syndromes among penstemons. Oikos 104, 345–361, https://doi.org/10.1111/j.0030-1299.2004.12819.x (2004).
doi: 10.1111/j.0030-1299.2004.12819.x
Thomson, J. D., Wilson, P., Valenzuela, M. & Malxone, M. Pollen presentation and pollination syndromes, with special reference to Penstemon. Pl Spec Biol 15, 11–29, https://doi.org/10.1046/j.1442-1984.2000.00026.x (2000).
doi: 10.1046/j.1442-1984.2000.00026.x
Wessinger, C. A., Freeman, C. C., Mort, M. E., Rausher, M. D. & Hileman, L. C. Multiplexed shotgun genotyping resolves species relationships within the North American genus Penstemon. Amer J Bot 103, 912–922, https://doi.org/10.3732/ajb.1500519 (2016).
doi: 10.3732/ajb.1500519
Castellanos, M. C., Wilson, P. & Thomson, J. D. Pollen transfer by hummingbirds and bumblebees, and the divergence of pollination modes in. Penstemon. Evolution 57, 2742–2752, https://doi.org/10.1111/j.0014-3820.2003.tb01516.x (2003).
doi: 10.1111/j.0014-3820.2003.tb01516.x
pubmed: 14761053
Castellanos, M. C., Wilson, P. & Thomson, J. D. Dynamic nectar replenishment in flowers of Penstemon (Scrophulariaceae). Amer J Bot 89, 111–118, https://doi.org/10.3732/ajb.89.1.111 (2002).
doi: 10.3732/ajb.89.1.111
Castellanos, M. C., Wilson, P. & Thomson, J. D. ‘Anti-bee’ and ‘pro-bird’ changes during the evolution of hummingbird pollination in Penstemon flowers. J Evol Biol 17, 876–885, https://doi.org/10.1111/j.1420-9101.2004.00729.x (2004).
doi: 10.1111/j.1420-9101.2004.00729.x
pubmed: 15271088
Wessinger, C. A., Hileman, L. C. & Rausher, M. D. Identification of major quantitative trait loci underlying floral pollination syndrome divergence in Penstemon. Philo Trans R. Soc B 369, 20130349, I10.1098/rstb.2013.0349 (2014).
Wessinger, C. A. & Rausher, M. D. Predictability and irreversibility of genetic changes associated with flower color evolution in Penstemon barbatus. Evolution 68, 1058–1070, https://doi.org/10.1111/evo.12340 (2014).
doi: 10.1111/evo.12340
pubmed: 24350572
Mitchell, R. J., Shaw, R. G. & Waser, N. M. Pollinator selection, quantitative genetics and predicted evolutionary responses of floral traits in Penstemon centranthifolius (Scrophulariaceae). Int J Pl Sci 159, 331–337, https://doi.org/10.1086/297554 (1998).
doi: 10.1086/297554
Reid, W. H., Sensiba, P. & Freeman, C. E. A mixed pollination system in Penstemon pseudospectabilis ME Jones (Scrophulariaceae). Great Basin Nat 48, 489–494, https://doi.org/10.2307/2997285 (1988).
doi: 10.2307/2997285
Lange, R. S. & Scott, P. E. Hummingbird and bee pollination of Penstemon pseudospectabilis. J Torrey Bot Soc 126, 99–106, https://doi.org/10.2307/2997285 (1999).
doi: 10.2307/2997285
Lara, C. & Ornelas, J. F. Pollination ecology of Penstemon roseus (Plantaginaceae), an endemic perennial shifted toward hummingbird specialization? Pl Syst Evol 271, 223–237, https://doi.org/10.1007/s00606-007-0624-0 (2008).
doi: 10.1007/s00606-007-0624-0
Salas-Arcos, L. C., Lara, C. & Ornelas, J. F. Reproductive biology and nectar secretion dynamics of Penstemon gentianoides (Plantaginaceae): a perennial herb with a mixed pollination system? PeerJ 5, e3636, https://doi.org/10.7717/peerj.3636 (2017).
doi: 10.7717/peerj.3636
pubmed: 28828248
pmcid: 5554440
Ornelas, J. F. & Lara, C. Nectar replenishment and pollen receipt interact in their effects on seed production of Penstemon roseus. Oecologia 160, 675–685, https://doi.org/10.1007/s00442-009-1337-6 (2009).
doi: 10.1007/s00442-009-1337-6
pubmed: 19377900
Zung, J. L., Forrest, J. R., Castellanos, M. C. & Thomson, J. D. Bee-to bird pollination shifts in Penstemon: effects of floral-lip removal and corolla constriction on the preferences of free-foraging bumble bees. Evol Ecol 29, 341–354, https://doi.org/10.1007/s10682-014-9716-9 (2015).
doi: 10.1007/s10682-014-9716-9
Salas-Arcos, L. C., Lara, C., Castillo-Guevara, C., Cuautle, M. & Ornelas, J. F. “Pro-bird” floral traits discourage bumblebee visits to Penstemon gentianoides (Plantaginaceae), a mixed-pollinated herb. Sci. Nature 106, 1, https://doi.org/10.1007/s00114-018-1595-4 (2019).
doi: 10.1007/s00114-018-1595-4
Canela, M. B. F. & Sazima, M. The pollination of Bromelia antiacantha (Bromeliaceae) in southeastern Brazil: ornithophilous versus mellitophilous features. Pl Biol 7, 411–416, https://doi.org/10.1055/s-2005-865619 (2003).
doi: 10.1055/s-2005-865619
Schmid, S., Schmid, V. S., Zillikens, A., Harter-Marques, B. & Steiner, J. Bimodal pollination system of the bromeliad Aechmea nudicaulis involving hummingbirds and bees. Pl Biol 13, 41–50, https://doi.org/10.1111/j.1438-8677.2010.00348.x (2011).
doi: 10.1111/j.1438-8677.2010.00348.x
Vandelook, F. et al. Nectar traits differ between pollination syndromes in Balsaminaceae. Ann Bot 124, 269–279, https://doi.org/10.1093/aob/mcz072 (2019).
doi: 10.1093/aob/mcz072
pubmed: 31120478
pmcid: 6758581
Rieseberg, L. H., Archer, M. A. & Wayne, R. K. Transgressive segregation, adaptation and speciation. Heredity 83, 363–72, https://doi.org/10.1038/sj.hdy.6886170 (1999).
doi: 10.1038/sj.hdy.6886170
pubmed: 10583537
Schemske, D. W. & Bradshaw, H. D. Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc Natl Acad Sci USA 96, 11910–11915, https://doi.org/10.1073/pnas.96.21.11910 (1999).
doi: 10.1073/pnas.96.21.11910
pubmed: 10518550
Spaethe, J., Tautz, J. & Chittka, L. Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci USA 98, 3898–3903, https://doi.org/10.1073/pnas.071053098 (2001).
doi: 10.1073/pnas.071053098
pubmed: 11259668
Ordano, M. & Ornelas, J. F. Generous-like flowers: nectar production in two epiphytic bromeliads and a meta-analysis of removal effects. Oecologia 140, 495–505, https://doi.org/10.1007/s00442-004-1597-0 (2004).
doi: 10.1007/s00442-004-1597-0
pubmed: 15221434
Luo, E. Y., Ogilvie, J. E. & Thomson, J. D. Stimulation of flower nectar replenishment by removal: a survey of eleven animal-pollinated plant species. J Pollinat Ecol 12, 52–62, https://doi.org/10.26786/1920-7603%282014%292 (2014).
doi: 10.26786/1920-7603%282014%292
Pyke, G. H. What does it cost a plant to produce floral nectar? Nature 350, 58–59, https://doi.org/10.1038/350058a0 (1991).
doi: 10.1038/350058a0
Ordano, M. & Ornelas, J. F. The cost of nectar replenishment in two epiphytic bromelialds. J Trop Ecol 21, 541–547, https://doi.org/10.1017/S026646740500266X (2005).
doi: 10.1017/S026646740500266X
Kimball, S. Links between floral morphology and floral visitors along an elevational gradient in a Penstemon hybrid zone. Oikos 117, 1064–1074, https://doi.org/10.1111/j.0030-1299.2008.16573.x (2008).
doi: 10.1111/j.0030-1299.2008.16573.x
Stiles, F. G. Ecology, flowering phenology, and hummingbird pollination of some Costa Rican Heliconia species. Ecology 56, 285–301, https://doi.org/10.2307/1934961 (1975).
doi: 10.2307/1934961
McDade, L. & Weeks, J. Nectar in hummingbird pollinated Neotropical plants II: interactions with flower visitors. Biotropica 36, 216–230, https://doi.org/10.1111/j.1744-7429.2004.tb00313.x (2004).
doi: 10.1111/j.1744-7429.2004.tb00313.x
Leiss, K. A., Vrieling, K. & Klinkhamer, P. G. L. Heritability of nectar production in Echium vulgare. Heredity 92, 446–451, https://doi.org/10.1038/sj.hdy.6800439 (2004).
doi: 10.1038/sj.hdy.6800439
pubmed: 15026780
Vorobyev, M., Osorio, D., Bennett, A. T. D., Marshall, N. J. & Cuthill, I. C. Tetrachromacy, oil droplets and bird plumage colors. J Comp Physiol A 183, 621–633, https://doi.org/10.1007/s003590050286 (1998).
doi: 10.1007/s003590050286
pubmed: 9839454
Herrera, G. et al. Spectral sensitivities of photoreceptors and their role in color discrimination in the green-backed firecrown hummingbird (Sephanoides sephanoides). J Comp Physiol A 194, 785–794, https://doi.org/10.1007/s00359-008-0349-8 (2008).
doi: 10.1007/s00359-008-0349-8
Macior, L. W. Floral resource sharing by bumblebees and hummingbirds in Pedicularis (Scrophulariaceae) pollination. Bull Torrey Bot Club 113, 101–109, https://doi.org/10.2307/2995932 (1986).
doi: 10.2307/2995932
Johnston, M. O. Natural selection on floral traits in two species of Lobelia with different pollinators. Evolution 45, 1468–1479, https://doi.org/10.1111/j.1558-5646.1991.tb02649.x (1991).
doi: 10.1111/j.1558-5646.1991.tb02649.x
pubmed: 28563822
Zacarías-Correa, A. G., Guzmán-Díaz, S. & Pérez-Calix, E. Taxonomía, distribución geográfica y ecológica del género Penstemon (Plantaginaceae) en la Faja Volcánica Transmexicana, México. Acta Bot Mex 126, e1428, https://doi.org/10.21829/abm126.2019.1428 (2019).
doi: 10.21829/abm126.2019.1428
Wolfe, A. D. et al. Phylogeny, taxonomic affinities, and biogeography of Penstemon (Plantaginaceae) based on ITS and cpDNA sequence data. Amer J Bot 93, 1699–1713, https://doi.org/10.3732/ajb.93.11.1699 (2006).
doi: 10.3732/ajb.93.11.1699
Anderson, J. T., Perera, N., Chowdhury, B. & Mitchell‐Olds, T. Geographic patterns of genetic divergence and adaptation across environmental gradients in Boechera stricta (Brassicaceae). Am Nat 186, S60–S73, https://doi.org/10.1086/682404 (2015).
doi: 10.1086/682404
pubmed: 26656218
pmcid: 4681450
Wadgymar, S. M., Daws, S. C. & Anderson, J. T. Integrating viability and fecundity selection to illuminate the adaptive nature of genetic clines. Evol Lett 1, 26–39, https://doi.org/10.1002/evl3.3 (2017).
doi: 10.1002/evl3.3
pubmed: 30283636
pmcid: 6121800
Kimball, S., Campbell, D. & Lessin, C. Differential performance of reciprocal hybrids in multiple environments. J Ecol 96, 1306–1318, https://doi.org/10.1111/j.1365-2745.2008.01432.x (2008).
doi: 10.1111/j.1365-2745.2008.01432.x
Lara, C. Temporal dynamics of flower use by hummingbirds in a highland temperate forest in Mexico. Ecoscience 13, 23–29, https://doi.org/10.2980/1195-6860 (2006).
doi: 10.2980/1195-6860
Straw, R. M. The penstemons of Mexico. II. Penstemon hartwegii, Penstemon gentianoides, and their allies. Bol Soc Bot Mex 27, 1–36, https://doi.org/10.17129/botsci.1073 (1962).
doi: 10.17129/botsci.1073
Kearns, C. A. & Inouye, D. W. Techniques for Pollination Biologists. University Press of Colorado, Niwot (1993).
R Core Team. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/ (Accessed 3 October 2018) (2014).
Muenchow, G. Ecological use of failure time analysis. Ecology 67, 246–250, https://doi.org/10.2307/1938524 (1986).
doi: 10.2307/1938524
Hart, N. S. & Vorobyev, M. Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. J Comp Physiol A 191, 381–392, https://doi.org/10.1007/s00359-004-0595-3 (2005).
doi: 10.1007/s00359-004-0595-3
Skorupski, P. & Chittka, L. Differences in photoreceptor processing speed for chromatic and achromatic vision in the bumblebee, Bombus terrestris. J. Neuroscience 30, 3896–3903, https://doi.org/10.1523/JNEUROSCI.5700-09.2010 (2010).
doi: 10.1523/JNEUROSCI.5700-09.2010
pubmed: 20237260
Chittka, L. The color hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of color opponency. J Comp Physiol A 170, 533–543, https://doi.org/10.1007/BF00199331 (1992).
doi: 10.1007/BF00199331
Maia, R., Eliason, C. M., Bitton, P. P., Doucet, S. M. & Shawkey, M. pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecol Evol 4, 906–913, https://doi.org/10.1111/2041-210X.12069 (2013).
doi: 10.1111/2041-210X.12069
Rademaker, M. C. J., de Jong, T. J. & Klinkhamer, P. G. L. Pollen dynamics of bumble-bee visitation on Echium vulgare. Funct Ecol 11, 554–563, https://doi.org/10.1046/j.1365-2435.1997.00124.x (1997).
doi: 10.1046/j.1365-2435.1997.00124.x
Bierzychudek, P. Pollinator limitation of plant reproductive effort. Am Nat 117, 838–840, https://doi.org/10.1086/283773 (1981).
doi: 10.1086/283773
Young, H. J. & Young, T. P. Alternative outcomes of natural and experimental high pollen loads. Ecology 73, 639–647, https://doi.org/10.2307/1940770 (1992).
doi: 10.2307/1940770
Sobel, J. M. & Chen, G. F. Unification of methods for estimating the strength of reproductive isolation. Evolution 68, 1511–1522, https://doi.org/10.1111/evo.12362 (2014).
doi: 10.1111/evo.12362
pubmed: 24450287