Dynamic Light Scattering Measurements for Soft Materials on Solid Substrates: Employing Evanescent-wave Illumination and Dark-field Collection with a High Numerical Aperture Microscope Objective.
Dynamic light scattering
dark-field
evanescent wave
microscope objective
soft material
Journal
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
ISSN: 1348-2246
Titre abrégé: Anal Sci
Pays: Switzerland
ID NLM: 8511078
Informations de publication
Date de publication:
10 Oct 2020
10 Oct 2020
Historique:
pubmed:
19
5
2020
medline:
19
5
2020
entrez:
19
5
2020
Statut:
ppublish
Résumé
We developed an instrument that allows us to measure dynamic light scattering from soft materials on solid substrates by avoiding strong background due to the reflection light from substrates. In the instrument, samples on substrates are illuminated by evanescent-light field and the resultant scattered light from the samples is collected with a dark-field optical configuration by employing a high numerical aperture microscope objective. We applied the instrument to measure the dynamic properties of supported lipid bilayers (SLBs), which have been widely utilized in industries as functional materials such as biosensors. From the time course of the scattered light from the SLBs, the power spectrum with the broad peak ranging from 10 to 20 kHz is observed. The use of the microscope objectives enables us to apply the instrument to future light scattering imaging for dynamic properties of soft materials supported on various substrates by combining with conventional microscope systems.
Identifiants
pubmed: 32418932
doi: 10.2116/analsci.20P068
pii: 10.2116/analsci.20P068
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1211-1215Références
R. Hirn, R. Bentz, T.M. Bayerl, Phys. Rev. E, 1999, 59, 5987.
doi: 10.1103/PhysRevE.59.5987
A. Metrelj and M. Copie, Phys. Rev. E, 2000, 61, 1622.
doi: 10.1103/PhysRevE.61.1622
J. Appell, G. Porte, E. Buhler, J. Phys. Chem. B, 2005, 109, 13186.
doi: 10.1021/jp051016k
pubmed: 16852643
E. Sutherland, S.M. Mercer, M. Everist, D.G. Leaist, J. Chem. Eng. Data, 2009, 54, 272.
doi: 10.1021/je800284g
B.A. Krajina, C. Tropini, A. Zhu, P. DiGiacomo, J.L. Sonneburg, S.C. Helshorn, A.W. Spakowitz, ACS Cent. Sci., 2017, 3, 1294.
doi: 10.1021/acscentsci.7b00449
pubmed: 29296670
pmcid: 5746858
R. Cerbino and P. Cicuta, J. Chem. Phys., 2017, 147, 110901.
doi: 10.1063/1.5001027
pubmed: 28938830
J.R. Guzman-Sepulveda and A. Dogariu, Appl. Opt., 2019, 58, D76.
doi: 10.1364/AO.58.000D76
pubmed: 31044823
T. Moro, Y. Takatori, K. Ishihara, T. Konno, Y. Takigawa, T. Matsushita, U.-II Chung, K. Nakamura, H. Kawaguchi, Nat. Mater., 2004, 3, 829.
doi: 10.1038/nmat1233
pubmed: 15502835
M. Goto, T. Tsukahara, K. Sato, T. Konno, K. Ishihara, K. Sato, T. Kitamori, Anal. Sci., 2007, 23, 245.
doi: 10.2116/analsci.23.245
pubmed: 17372362
K. Furukawa and T. Aiba, Langmuir, 2011, 27, 7341.
doi: 10.1021/la200808g
pubmed: 21604772
A. Gusain, N.J. Joshi, P.V. Varde, D.K. Aswal, Sens. Actuators, B, 2017, 239, 734.
doi: 10.1016/j.snb.2016.07.176
Y. Zhang, S. Wustoni, A. Savva, A. Giovannitti, I. McCulloch, S. Inal, J. Mater. Chem. C, 2018, 6, 5218.
doi: 10.1039/C8TC00370J
T. Hoshino, Y. Tanaka, H. Jinnai, A. Takahara, J. Phys. Soc. Jpn., 2013, 82, 021014.
doi: 10.7566/JPSJ.82.021014
H.-L. Wu, Y. Tong, Q. Peng, N. Li, S. Ye, Phys. Chem. Chem. Phys., 2016, 18, 1411.
doi: 10.1039/C5CP04960A
pubmed: 26461203
H. Asakawa, N. Inada, K. Hirata, S. Matsui, T. Igarashi, N. Oku, N. Yoshikawa, T. Fukuma, Nanotechnology, 2017, 28, 455603.
doi: 10.1088/1361-6528/aa8aa7
pubmed: 28876225
G.E. Yakubov, B. Loppinet, H. Zhang, J. Rühe, R. Sigel, G. Flytas, Phys. Rev. Lett., 2004, 92, 115501.
doi: 10.1103/PhysRevLett.92.115501
pubmed: 15089145
R. Hirn, B. Schuster, U.B. Sleytr, T.M. Bayerl, Biophys. J., 1999, 77, 2066.
doi: 10.1016/S0006-3495(99)77048-7
pubmed: 10512827
pmcid: 1300488
T. Nomoto, M. Takahashi, T. Fujii, L. Chiari, T. Toyota, M. Fujinami, Anal. Sci., 2018, 34, 1237.
doi: 10.2116/analsci.18P200
pubmed: 29962374
M.S. Khan, N.S. Dosoky, J.D. Williams, Int. J. Mol. Sci., 2013, 14, 21561.
doi: 10.3390/ijms141121561
pubmed: 24185908
pmcid: 3856022
E.C. Yusko, J.M. Johnson, S. Majd, P. Prangkio, R. Rollings, Nat. Nanotechnol., 2011, 6, 253.
doi: 10.1038/nnano.2011.12
pubmed: 21336266
pmcid: 3071889
G.-P. Nikoleli, D.P. Nikoleis, G. Evtugyn, T. Hianik, Trends Anal. Chem., 2016, 79, 210.
doi: 10.1016/j.trac.2016.01.021
T. Kjellerup, M. Cârdenas, H.P. Wacklin, Langmuir, 2014, 30, 7259.
doi: 10.1021/la500897x
C. Kaise, H. Sakai, A. Yamaguchi, S. Yokokawa, T. Kaneko, Y. Arai, M. Abe, J. Oleo Sci., 2002, 51, 43.
doi: 10.5650/jos.51.43
M.F. Hildenbrand and T.M. Bayerl, Biophys. J., 2005, 88, 3360.
doi: 10.1529/biophysj.104.050112
pubmed: 15764657
M. Levivers, J.M. Seddon, M. Declercq, E. Robles, P. Luckham, Langmuir, 2019, 35, 729.
doi: 10.1021/acs.langmuir.8b03555
S.H. Chen, C.Y. Liao, H.W. Huang, T.M. Weiss, M.C. Bellisent-Funel, F. Sette, Phys. Rev. Lett., 2001, 86, 740.
doi: 10.1103/PhysRevLett.86.740
pubmed: 11177926
L. Sun, B. Akgun, S. Narayanan, Z. Jiang, M.D. Foster, Macromolecules, 2016, 49, 7308.
doi: 10.1021/acs.macromol.6b01081
H.T. McMahon and J.L. Gallop, Nature, 2005, 438, 590.
doi: 10.1038/nature04396
pubmed: 16319878
A. Zidovska and E. Sackman, Phys. Rev. Lett., 2006, 96, 048103.
doi: 10.1103/PhysRevLett.96.048103