Machine learning to quantify habitual physical activity in children with cerebral palsy.


Journal

Developmental medicine and child neurology
ISSN: 1469-8749
Titre abrégé: Dev Med Child Neurol
Pays: England
ID NLM: 0006761

Informations de publication

Date de publication:
09 2020
Historique:
accepted: 07 04 2020
pubmed: 19 5 2020
medline: 15 12 2020
entrez: 19 5 2020
Statut: ppublish

Résumé

To investigate whether activity-monitors and machine learning models could provide accurate information about physical activity performed by children and adolescents with cerebral palsy (CP) who use mobility aids for ambulation. Eleven participants (mean age 11y [SD 3y]; six females, five males) classified in Gross Motor Function Classification System (GMFCS) levels III and IV, completed six physical activity trials wearing a tri-axial accelerometer on the wrist, hip, and thigh. Trials included supine rest, upper-limb task, walking, wheelchair propulsion, and cycling. Three supervised learning algorithms (decision tree, support vector machine [SVM], random forest) were trained on features in the raw-acceleration signal. Model-performance was evaluated using leave-one-subject-out cross-validation accuracy. Cross-validation accuracy for the single-placement models ranged from 59% to 79%, with the best performance achieved by the random forest wrist model (79%). Combining features from two or more accelerometer placements significantly improved classification accuracy. The random forest wrist and hip model achieved an overall accuracy of 92%, while the SVM wrist, hip, and thigh model achieved an overall accuracy of 90%. Models trained on features in the raw-acceleration signal may provide accurate recognition of clinically relevant physical activity behaviours in children and adolescents with CP who use mobility aids for ambulation in a controlled setting. Machine learning may assist clinicians in evaluating the efficacy of surgical and therapy-based interventions. Machine learning may help researchers better understand the short- and long-term benefits of physical activity for children with more severe motor impairments. Investigar si los monitores de actividad y los modelos de aprendizaje automático pueden proveer información precisa sobre la actividad física realizada por niños/as y adolescentes con parálisis cerebral (PC) que usan ayudas de movilidad para la deambulación. MÉTODOS: Once participantes (edad media 11a y [DE 3a]; seis niñas, cinco niños) clasificados por el Sistema de Clasificación de la Función Motora Gruesa [GMFCS] en los niveles III y IV, completaron seis pruebas de actividad física llevando un acelerómetro triaxial en la muñeca, la cadera y el muslo. Las pruebas incluyeron descanso en supino, tarea de miembro superior, marcha, propulsión para silla de ruedas y pedaleo. Se capacitaron tres algoritmos de aprendizaje supervisado [árbol de decisión (decision tree), máquina de vectores de soporte (support vector machine [SVM]) y bosque aleatorio (random forest) en las características de la señal de aceleración en bruto. El rendimiento del modelo se evaluó utilizando la precisión de validación cruzada de dejar un sujeto fuera. La precisión de la validación cruzada para los modelos de colocación única oscilaron entre el 59% y el 79%, con la mejor ejecución alcanzada a través del modelo de muñeca de bosque aleatorio (79%). La combinación de características de dos o más ubicaciones del acelerómetro mejoró significativamente la precisión de clasificación. El modelo de bosque aleatorio de muñeca y cadera logró una precisión total del 92%, mientras que el modelo SVM de muñeca, cadera y muslo logró una precisión total del 90%. INTERPRETACIÓN: Los modelos basados en las características de la señal de aceleración en bruto podrían proveer un reconocimiento preciso de los comportamientos de actividad física clínicamente relevante en niños/as y adolescentes con PC que usan ayudas de movilidad para la deambulación en un entorno controlado. Investigar se monitores de atividade e modelos de aprendizagem de máquinas podem fornecer informações acuradas sobre a atividade física realizada por crianças e adolescentes com paralisia cerebral (PC) que usam dispositivos de auxílio à deambulação. MÉTODO: Onze participantes (media de idade 11a [DP 3a]; seis do sexo feminino, cinco do sexo masculino) classificados segundo o sistema de Classificação da Função Motora Grossa (GMFCS) nos níveis III e IV, completaram seis testes de atividade física usando um acelerômetro triaxial no punho, quadril e coxa. Os testes incluíram repouso em supino, tarefa do membro superior, marcha, propulsão da cadeira de rodas, e pedalar. Três algoritmos de aprendizagem supervisionada (árvore de decisão, máquina de suporte vetor [MSV], floresta aleatória) foram treinados quanto a aspectos do sinal bruto de aceleração. O desempenho do modelo foi avaliado usando a acurácia de validação cruzada do tipo que deixa um sujeito de fora. A acurária da validação cruzada para os modelos de posicionamento único variaram de 59% a 79%, com o melhor desempenho atingido pelo modelo de floresta aleatória do punho (79%). Combinar aspectos de um ou dois posicionamentos dos acelerômetros melhorou significativamente a acurácia da classificação. O modelo de floresta aleatória do punho e quadril atingiu acurácia geral de 92%, enquanto o MSV do punho, quadril e coxa atingiu acurácia de 90%. INTERPRETAÇÃO: Modelos treinados quanto a aspectos do sinal bruto da aceleração podem fornecer reconhecimento acurado de comportamentos de atividade física clinicamente relevantes em crianças e adolescentes com PC que usam dispositivos auxiliares de mobilidade em um ambiente controlado.

Autres résumés

Type: Publisher (spa)
Investigar si los monitores de actividad y los modelos de aprendizaje automático pueden proveer información precisa sobre la actividad física realizada por niños/as y adolescentes con parálisis cerebral (PC) que usan ayudas de movilidad para la deambulación. MÉTODOS: Once participantes (edad media 11a y [DE 3a]; seis niñas, cinco niños) clasificados por el Sistema de Clasificación de la Función Motora Gruesa [GMFCS] en los niveles III y IV, completaron seis pruebas de actividad física llevando un acelerómetro triaxial en la muñeca, la cadera y el muslo. Las pruebas incluyeron descanso en supino, tarea de miembro superior, marcha, propulsión para silla de ruedas y pedaleo. Se capacitaron tres algoritmos de aprendizaje supervisado [árbol de decisión (decision tree), máquina de vectores de soporte (support vector machine [SVM]) y bosque aleatorio (random forest) en las características de la señal de aceleración en bruto. El rendimiento del modelo se evaluó utilizando la precisión de validación cruzada de dejar un sujeto fuera.
Type: Publisher (por)
Investigar se monitores de atividade e modelos de aprendizagem de máquinas podem fornecer informações acuradas sobre a atividade física realizada por crianças e adolescentes com paralisia cerebral (PC) que usam dispositivos de auxílio à deambulação. MÉTODO: Onze participantes (media de idade 11a [DP 3a]; seis do sexo feminino, cinco do sexo masculino) classificados segundo o sistema de Classificação da Função Motora Grossa (GMFCS) nos níveis III e IV, completaram seis testes de atividade física usando um acelerômetro triaxial no punho, quadril e coxa. Os testes incluíram repouso em supino, tarefa do membro superior, marcha, propulsão da cadeira de rodas, e pedalar. Três algoritmos de aprendizagem supervisionada (árvore de decisão, máquina de suporte vetor [MSV], floresta aleatória) foram treinados quanto a aspectos do sinal bruto de aceleração. O desempenho do modelo foi avaliado usando a acurácia de validação cruzada do tipo que deixa um sujeito de fora.

Identifiants

pubmed: 32420632
doi: 10.1111/dmcn.14560
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1054-1060

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2020 Mac Keith Press.

Références

Carlon SL, Taylor NF, Dodd KJ, Shields N. Differences in habitual physical activity levels of young people with cerebral palsy and their typically developing peers: a systematic review. Disabil Rehabil 2013; 35: 647-55.
Maher CA, Williams MT, Olds T, Lane AE. Physical and sedentary activity in adolescents with cerebral palsy. Dev Med Child Neurol 2007; 49: 450-7.
Verschuren O, Peterson MD, Balemans AC, Hurvitz EA. Exercise and physical activity recommendations for people with cerebral palsy. Dev Med Child Neurol 2016; 58: 798-808.
Hanna SE, Rosenbaum PL, Bartlett DJ, et al. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev Med Child Neurol 2009; 51: 295-302.
Verschuren O, Darrah J, Novak I, Ketelaar M, Wiart L. Health-enhancing physical activity in children with cerebral palsy: more of the same is not enough. Phys Ther 2014; 94: 297-305.
Rowland JL, Fragala-Pinkham M, Miles C, O'Neil ME. The scope of pediatric physical therapy practice in health promotion and fitness for youth with disabilities. Pediatr Phys Ther 2015; 27: 2-15.
Fowler EG, Kolobe TH, Damiano DL, et al. Promotion of physical fitness and prevention of secondary conditions for children with cerebral palsy: section on pediatrics research summit proceedings. Phys Ther 2007; 87: 1495-510.
Trost SG, Cliff D, Ahmadi M, Van Tuc N, Hagenbuchner M. Sensor-enabled activity class recognition in preschoolers: hip versus wrist data. Med Sci Sports Exerc 2018; 50: 634-41.
O'Neil ME, Fragala-Pinkham M, Lennon N, George A, Forman J, Trost SG. Reliability and validity of objective measures of physical activity in youth with cerebral palsy who are ambulatory. Phys Ther 2016; 96: 37-45.
Clanchy KM, Tweedy SM, Boyd RN, Trost SG. Validity of accelerometry in ambulatory children and adolescents with cerebral palsy. Eur J Appl Physiol 2011; 111: 2951-9.
Ryan J, Walsh M, Gormley J. Ability of RT3 accelerometer cut points to detect physical activity intensity in ambulatory children with cerebral palsy. Adapt Phys Act Q 2014; 31: 310-24.
Oftedal S, Bell KL, Davies PS, Ware RS, Boyd RN. Validation of accelerometer cut points in toddlers with and without cerebral palsy. Med Sci Sports Exerc 2014; 46: 1808-15.
Keawutan P, Bell KL, Oftedal S, Davies PS, Boyd RN. Validation of accelerometer cut-points in children with cerebral palsy aged 4 to 5 years. Pediatr Phys Ther 2016; 28: 427-34.
Trost SG, Fragala-Pinkham M, Lennon N, O'Neil ME. Decision trees for detection of activity intensity in youth with cerebral palsy. Med Sci Sports Exerc 2016; 48: 958-66.
Trost SG, O'Neil M. Clinical use of objective measures of physical activity. Brit J Sport Med 2013; 48: 178-81.
Trost SG, Zheng Y, Wong WK. Machine learning for activity recognition: hip versus wrist data. Physiol Meas 2014; 35: 2183-9.
Mannini A, Rosenberger M, Haskell WL, Sabatini AM, Intille SS. Activity recognition in youth using single accelerometer placed at wrist or ankle. Med Sci Sports Exerc 2017; 49: 801-12.
Ahmadi M, O'Neil M, Fragala-Pinkham M, Lennon N, Trost S. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy. J Neuroeng Rehabil 2018; 15: 105.
Armstrong EL, Boyd RN, Kentish MJ, Carty CP, Horan SA. Effects of a training programme of functional electrical stimulation (FES) powered cycling, recreational cycling and goal-directed exercise training on children with cerebral palsy: a randomised controlled trial protocol. BMJ Open 2019; 9: e024881.
Vapnik V. The nature of statistical learning theory. New York: Springer, 2013.
Breiman L, Friedman J, Olshen R, Stone C. Classification and regression trees. New York: CRC Press, 2017.
Breiman L. Random forests. Mach Learn 2001; 45: 5-32.
Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005; 27: 1226-38.
Kuhn M. Building predictive models in R using the caret package. J Stat Softw 2008; 28: 1-26.
Chowdhury A, Tjondronegoro D, Chandran V, Trost S. Physical activity recognition using posterior-adapted class-based fusion of multi-accelerometers data. IEEE J Biomed Health Inform 2018; 22: 678-85.
Ruch N, Rumo M, Mäder U. Recognition of activities in children by two uniaxial accelerometers in free-living conditions. Eur J Appl Physiol 2011; 111: 1917-27.
Cleland I, Kikhia B, Nugent C, et al. Optimal placement of accelerometers for the detection of everyday activities. Sensors 2013; 13: 9183-200.
Verschuren O, Peterson MD, Leferink S, Darrah J. Muscle activation and energy-requirements for varying postures in children and adolescents with cerebral palsy. J Pediatr 2014; 165: 1011-6.
Novak I. Evidence-based diagnosis, health care, and rehabilitation for children with cerebral palsy. J Child Neurol 2014; 29: 1141-56.
McIntyre S, Morgan C, Walker K, Novak I. Cerebral palsy - don't delay. Dev Disabil Res Rev 2011; 17: 114-29.

Auteurs

Benjamin I Goodlich (BI)

School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia.

Ellen L Armstrong (EL)

School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia.
Centre for Children's Health Research, Brisbane, Queensland, Australia.

Sean A Horan (SA)

School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia.

Emmah Baque (E)

School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia.

Christopher P Carty (CP)

School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia.
Centre for Children's Health Research, Brisbane, Queensland, Australia.

Matthew N Ahmadi (MN)

Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.

Stewart G Trost (SG)

Centre for Children's Health Research, Brisbane, Queensland, Australia.
Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH